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RCML History 
The Research Council on Mathematics Learning, formerly The Research Council for 
Diagnostic and Prescriptive Mathematics, grew from a seed planted at a 1974 national 
conference held at Kent State University. A need for an informational sharing structure in 
diagnostic, prescriptive, and remedial mathematics was identified by James W. Heddens. A 
group of invited professional educators convened to explore, discuss, and exchange ideas 
especially in regard to pupils having difficulty in learning mathematics. It was noted that there 
was considerable fragmentation and repetition of effort in research on learning deficiencies at all 
levels of student mathematical development. The discussions centered on how individuals could 
pool their talents, resources, and research efforts to help develop a body of knowledge. The 
intent was for teams of researchers to work together in collaborative research focused on solving 
student difficulties encountered in learning mathematics. 
 
Specific areas identified were: 
 
1. Synthesize innovative approaches.  
2. Create insightful diagnostic instruments.  
3. Create diagnostic techniques.  
4. Develop new and interesting materials.  
5. Examine research reporting strategies. 
 
As a professional organization, the Research Council on Mathematics Learning (RCML) may 
be thought of as a vehicle to be used by its membership to accomplish specific goals. There is 
opportunity for everyone to actively participate in RCML. Indeed, such participation is 
mandatory if RCML is to continue to provide a forum for exploration, examination, and 
professional growth for mathematics educators at all levels. 
 
The Founding Members of the Council are those individuals that presented papers at one of the 
first three National Remedial Mathematics Conferences held at Kent State University in 1974, 
1975, and 1976. 
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IMPACT OF MATHEMATICS PROGRESSIONS ON TEACHER CONTENT 
KNOWLEDGE  

Alice J. Steimle 
University of Mississippi 

asteimle@olemiss.edu

Julie S. James 
University of Mississippi 

jjames1@olemiss.edu 

This paper presents a comparison from three state-level Mathematics and Science Partnership 
Projects focused on the development of elementary and middle school mathematics teachers’ 
content knowledge. Changes in content knowledge were measured using the Content Knowledge 
for Teaching Mathematics Assessment, developed by the Learning Mathematics for Teaching 
Project at the University of Michigan.  Initial findings indicate that focusing on the progression 
of mathematics learning may have a greater impact on teachers’ mathematics content 
development than a grade-level or domain-specific focus. 

Through multiple iterations of state-level Mathematics and Science Partnership (MSP) 

projects, our research team has gained valuable insight into the development of quality training 

programs for inservice elementary and middle school mathematics teachers. With each 

successive project, we adjusted the design of the professional development (PD) experience to 

reflect lessons learned from previous projects. In this paper, we share how these changes across 

projects show an impact on the development of the mathematics learning for inservice teachers. 

Participating teachers in these projects consisted of elementary and middle school classroom 

teachers. Classroom teacher assignments ranged from lower elementary fully- contained 

classrooms through middle school subject-specific classrooms. The majority of project 

participants came from high-need, rural school settings.  

The project team made decisions regarding the content focus of teacher training programs 

using information from national research publications, national standards initiatives, and state-

level curriculum documents. In our most recent teacher PD project, the focus on the progression 

of content knowledge across elementary and middle school grades had a significant impact on 

the content knowledge development of participating teachers. While initial projects showed 

positive impacts on teacher content knowledge, the narrower content focus did not produce the 

significant results that were shown from the focus on the progression of mathematics across 

grade levels.  

Theoretical Framework 

Since the implementation of more rigorous content standards in mathematics, there is a need 

for additional content development of teachers. The deep conceptual nature of these new 
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standards goes far beyond the mathematical training of many elementary and middle school 

teachers. Expanding teachers’ current mathematical understandings requires them to be engaged 

in transformative PD designed to change the way they think about how mathematics should be 

taught (Smith, 2001). Mathematics learning should involve opportunities to make sense of 

problems and reason through solution processes (NCTM, 2000; NRC, 2001). By engaging in 

these practices, teachers will experience the impact that these practices can have on students.  

In developing teachers’ content knowledge, PD must engage teachers in collaboratively 

completing tasks that enable them to expand their views of what it means to know and 

understand mathematics (NRC, 2001). The type of mathematical knowledge required to facilitate 

learning represents a special type of content knowledge (Ball, Thames, & Phelps, 2008) and the 

development of this content knowledge is enhanced by participating as a learner in a classroom 

environment in which the instructor models appropriate instructional techniques and behaviors 

(Loucks-Horsley, Hewson, Love, & Stiles, 1998; Smith, 2001). This transformative approach to 

PD must be presented through multiple, consistent opportunities for teachers to engage in hands-

on, active learning through tasks that are coherent and relevant to their classrooms (Tate & 

Rousseau, 2007) and should align with the mathematics that teachers are required to teach 

(Cohen, 2004), based on state frameworks. 

According to Heritage (2008), “Learning is envisioned as a development of progressive 

sophistication in understanding and skills within a domain” (p. 4). Therefore, teachers should 

engage in tasks that facilitate their understanding of the development of the mathematics in 

earlier grade levels through later grade levels (Cohen, 2004). In a report by the Consortium for 

Policy Research and Education, the authors state, “Learning progressions can inform teachers 

about what to expect from their students. They provide an empirical basis for choices about when 

to teach what to whom” (Daro, Mosher, & Cocoran, 2011). Our study suggests that engaging 

teachers in exploring these learning progressions may also have a significant impact on their 

content knowledge for teaching mathematics.  

Methodology 

Funding provided by a state-level MSP program allowed for multiple projects across several 

years. With each iteration of funding, the structure of the PD remained the same with slight 

variations on the content focus, based upon lessons learned from earlier projects. Each project 
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consisted of a two-week summer institute, three follow-up PD sessions during the academic year, 

and monthly online discussions.   

The Content Knowledge for Teaching Mathematics (CKTM) Assessment, developed by the 

Learning Mathematics for Teaching (LMT) Project at the University of Michigan (Ball, Hill & 

Bass, 2005), was used as the primary assessment of pedagogical content knowledge. Assessment 

items were chosen from a bank of elementary and middle school mathematics items focused on 

the concepts of patterns, functions, and algebra; geometry; and numerical reasoning. Each item 

had a value of one point and was piloted by LMT with over 500 elementary teachers, yielding 

information about item characteristics and overall scale reliabilities for various piloted forms of 

the exam. To develop these assessments for each project, project goals and content focal areas 

were provided to external evaluators, who selected items from the CKTM item bank for the 

project team to review. The project team identified the items which were aligned with planned 

professional development activities. Project evaluators then used this feedback to develop the 

content assessments. The project-specific assessment was administered to participating teachers 

in each project as a pretest preceding the summer institute. The same instrument was 

administered again on the last day of the institute to the same individuals. The pretests and 

posttests for individuals were then paired so that individual progress could be examined. In the 

following sections, we will provide a brief description of each project as well as a comparison of 

the participating teachers. 

Promoting Innovation in Mathematics Education (Project PrIME): 2009-2012 

Project PrIME envisioned mathematics classrooms in which students were engaged in 

worthwhile mathematical tasks that afforded them the opportunity to learn mathematics through 

problem solving. Project participants included mathematics teachers from Grades 4-8 from 

schools across North Mississippi. Individual teachers were recruited from area schools with 

some schools and school districts having multiple teachers represented, while others had only 

one participating teacher representing the school.  

The content focus for the summer institute of Project PrIME was teaching mathematics 

through problem solving. Teachers had the opportunity to participate in the project for multiple 

years. Using the description of problem solving and the content strands as outlined by the 

Principles and Standards for School Mathematics (NCTM, 2000), teachers had the opportunity 

to focus on a different content area for each year of participation. First-year participants focused 
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on the number and operations and algebra strands; second-year on geometry; and third-year on 

measurement. For this study, we are only reporting on the content development of first-year 

participants, as that content was similar across all three MSP projects. 

All teachers (Grades 4-8) participated together in one class exploring the same content, 

which allowed teachers to bring unique perspectives to the variety of problem solving strategies 

based on their grade level. Since the goal of the project was to develop teachers’ understanding 

of teaching through problem solving, the actual content of numbers, operations, and algebra was 

used as a vehicle for presenting ideas related to problem solving.   

The CKTM Assessment used for Project PrIME consisted of 33 items chosen from the 

patterns, functions, and algebraic reasoning bank of items. Matched pretests and posttests were 

analyzed for 103 first-year participants of Project PrIME.  

Developing Excellence in Education through Professional Learning Communities 

(DEEPLC Project): 2012-2015 

The DEEPLC Project aimed to meet teachers where they were in their school communities to 

develop cohorts of effective mathematics instructors who engaged students in developing a deep 

understanding of mathematics concepts and worked collaboratively with peers in meaningful 

professional learning communities. Project participants were recruited from area school districts 

as cohorts from within those districts. In order to be eligible to participate in the project, the 

district had to have a cohort that consisted of at least three mathematics teachers from Grades 4-8 

and one administrator. The project team based this decision on observations from the previous 

project noticing that teachers who had colleagues who had also participated were more likely to 

implement instructional changes in the classroom. This evidence was based on observations of 

classroom instruction.  

The DEEPLC Project utilized the Common Core State Standards for Mathematics (CCSSM) 

(National Governors Association, 2010) as its resource for content alignment, as Mississippi had 

adopted the CCSSM as its state-level mathematics curriculum in 2010. The goal of this project 

was for teachers to gain a deeper understanding of the content they taught as outlined by the 

CCSSM. For this purpose, teachers were separated into classes during the summer institute based 

on their grade-band, elementary (Grades 4-5) and middle level (Grades 6-8). The elementary 

class content focused on the numbers and operations and operations and algebraic thinking 

domains from the CCSSM, while the middle grades class content focused on the expressions and 
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equations and algebra domains from the CCSSM. This division allowed teachers to explore 

deeply the content for which they were responsible in their classroom. 

The CKTM Assessment for the DEEPLC Project utilized 45 items each for the elementary 

version and the middle school version. The assessment items were selected based on the content 

addressed during the summer institute which was determined by examining the critical areas of 

the CCSSM for each grade band. Matched pretests and posttests were analyzed for 64 elementary 

teachers and 53 middle school teachers (117 matched assessments over three years of the 

DEEPLC Project).  

Creating Continuity and Connections across Content (C4 Project): 2015-2017  

The C4 Project envisioned consistent and coherent mathematics instruction across 

kindergarten through 8th grade mathematics classrooms in which students were engaged in 

learning through problem-solving and teachers utilized ongoing formative assessment in their 

instructional practices. Recruitment began through an application process through which 

individual schools were asked to indicate their level of commitment to participation in the project 

and the number of teachers interested in participating. Individual mathematics teachers from 

Grades K-8 were then recruited from selected schools. There was no limitation to the number of 

participants from each school. 

The content focus for the C4 Project was to develop a deep understanding of the progression 

of learning across the elementary and middle school grades with specific emphasis on numbers, 

operations, and algebraic reasoning as outlined by the current state standards. These content 

standards were the state-level adaptation of the CCSSM. Since this iteration of funding extended 

the grade level of participants from Grades 4-8 to Grades K-8, the project team was able to 

expand the content focus to the primary grades. Since the content focus was on understanding 

how mathematics content is developed across grade levels, all teachers (K-8) were together in 

one class during the instructional time for the two-week summer institute. This content focus 

allowed the project team to emphasize the connections of the mathematics from the primary 

grades, to the upper elementary grades, through the middle school curriculum.  

The CKTM Assessment used for the C4 Project consisted of 31 items designed to capture 

teachers’ mathematics content knowledge as well as how teachers solve the special mathematical 

tasks that arise in teaching, including evaluating unusual solution methods, using mathematical 

definitions, representing mathematical content to students, and identifying adequate 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 5



mathematical explanations. Pretests and posttests were paired for 34 participants in Cohort 1 and 

42 participants in Cohort 2 of the C4 Project (76 matched assessments over two years).   

Table 1 
Project Participant Distribution 
 Number 

of 
schools 

Number 
of school 
districts 

Individual 
participants 

School 
cohort 

participants 
Total 

participants 

Matched 
pretests and 
posttests (n) 

PrIME 69 38 73 44 117 103 
DEEPLC 18 9 4 117 121 117 
C4 Project 17 9 1 85 86 76 

 
Findings 

These three projects measured similar content across four different versions of the CKTM 

Assessment. Therefore, the research team is reporting effect sizes as a means to compare growth 

in mathematics content knowledge across these groups. According to Cohen (as cited in Centre 

for Education Statistics and Evaluation, 2014), “Effect sizes are often used to measure the 

difference in performance of two groups” (pg. 2). Cohen suggested that 0.2 be considered a 

‘small’ effect size, 0.5 a ‘medium’ effect size, and 0.8 a ‘large’ effect size.  

Results for Project PrIME were analyzed for 103 teachers from Years 1, 2, and 3 combined 

who had both pretests and posttests which each contained 33 assessment items. There was almost 

a three-point (2.9) gain in the mean from pre administration to post administration. This 

difference between the pretest score arithmetic mean (15.94) and the posttest score arithmetic 

mean (18.03) yielded an effect size of 0.35. This index falls in the range for small effects, and 

meets the benchmark for changes in content knowledge set by the project. When the effect size is 

0.35, the cumulative probability is 0.63, meaning the upper-half of the posttest score population 

exceeded 63% of the pretest score population.   

Results for the DEEPLC Project were analyzed for 64 elementary teachers from the Years 1, 

2, and 3 summer institutes who had both pretests and posttests which each contained 45 

assessment items. There was over a 2-point (2.7) gain in the mean from pre- to post- 

administration. This difference between the pretest score arithmetic mean (26.69) and the 

posttest score arithmetic mean (29.39) yielded an effect size of 0.53. This index falls in the range 

for medium effects. Results were also analyzed for 53 middle school teachers from the Years 1, 

2, and 3 summer institutes who had both pretests and posttests which each contained 45 

assessment items. The point increase of the mean from pre to post administration was 2.6. This 
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difference between the pretest score arithmetic mean (28.06) and the posttest score arithmetic 

mean (30.68) yielded an effect size of 0.40. 

Results for the C4 Project were analyzed separately for each cohort of teachers since the 

project is currently in its second year of funding with the possibility of having a third year. For 

cohort 1, results of the 31-item assessments were analyzed for 34 teachers. The mean score at 

baseline was 12.32. The mean score at follow-up was 15.44. Participants showed more than three 

points (3.12) growth on the assessment. Using the pretest standard deviation of 5.1, the effect 

size is 0.611. For cohort 2, results of the same 31-item assessment were analyzed for 42 teachers.  

The mean score of the pretests was 13.23 with standard deviation of 5.30. The mean score of the 

posttests was 17.92 with standard deviation of 5.4.  Participants showed a mean gain of 4.7 

points on the assessment and the effect size was 0.883, within the range of large effects. 

Table 2 
Assessment Results 
 Number 

of items n 
Pretest 
mean 

Pretest 
SD 

Posttest 
mean 

Posttest 
SD 

Effect 
size 

PrIME 33 103 15.94 6.01 18.03 6.23 0.35 
     PD Content Focus: Teaching through problem solving. 
DEEPLC Elementary 45 64 26.69 5.08 29.39 4.86 0.53 
DEEPLC Middle 45 53 28.06 6.52 30.68 6.45 0.4 
     PD Content Focus: Grade level specific mathematics standards. 
C4 Project cohort 1 31 34 12.32 5.1 15.44 4.89 0.611 
C4 Project cohort 2 31 42 13.23 5.3 17.92 5.4 0.883 
     PD Content Focus: Progression of related skills from primary through middle grades curriculum. 

n represents number of participants within each project with matched pre- and post-assessments. 

Discussion 

The third project produced significant findings on the development of teacher content 

knowledge which may be linked to a focus on the progression of mathematics content across 

elementary and middle grades. While some of the same tasks were utilized from the first two 

projects, many new investigations into how the content was developed were included. For 

example, the content for the first week of the summer institute focused entirely on addition and 

subtraction from introduction of these concepts through counting in Grades K-1, through 

developing an understanding of place value and its connection to addition and subtraction 

algorithms for multidigit whole numbers in Grades 2-3, to connecting these foundational ideas to 

addition and subtraction of fractions in Grades 4-5, into applying these understandings to 
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operations with integers in Grade 6 and ultimately to understanding the generalized arithmetic of 

expressions and equations in Grades 7-8. A similar progression was developed in week two with 

regard to multiplication and division. By exploring the full progression of a mathematical 

concept from introduction to algebraic generalization, teachers were able to gain a complete 

understanding of the concept and of where the content they teach fits within the trajectory of 

student learning. Further investigation of this idea may be beneficial to future studies on the 

impact of professional development for inservice mathematics teachers. 
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This exploratory case study examined prospective elementary, middle grades, and 
secondary teachers’ (PSTs) perception of their struggles in a mathematics content course 
for teachers. In particular, this study considered the ways that the PSTs characterized 
their struggle while engaging in a non-routine problem-solving task. Results indicated 
that the PSTs attempted to describe their own struggles while they focused on getting the 
correct answer and making sense of their work. 
 

Students’ struggle to learn mathematics is often viewed as problematic, but research 

suggests that the right amount of struggle can be a productive and necessary component 

of learning mathematics (Hiebert & Grouws, 2007). In the field of mathematics 

education, more and more students are encouraged to engage in productive struggle to 

learn mathematics for understanding (NCTM, 2014; Warshauer, 2015). Productive 

struggle refers to the “effort to make sense of mathematics, to figure something out that is 

not immediately apparent” (Hiebert & Grouws, p. 387). This idea that struggle can be 

productive is linked to students making sense of and persevering in solving problems 

(NCTM, 2014) and would suggest a need for a growth mindset (Star, 2015). Students 

with a growth mindset believe that abilities and intelligences can be developed as 

opposed to being fixed traits (fixed mindset) (Dweck, 2007). Effective mathematics 

teaching provides opportunities and supports for students to engage in productive 

struggle to understand mathematics at a deeper level rather than focusing on finding 

correct solutions (NCTM, 2014). To better understand the process of productive struggle 

and how best to engage prospective mathematics teachers in productive struggle (PS), a 

small exploratory case study was conducted in three mathematics content courses to 

examine (1) how prospective elementary, middle, and secondary teachers engaged in PS 

as they completed non-routine mathematical tasks and (2) how prospective teachers 

perceived and characterized their struggle during non-routine mathematical tasks.  
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Conceptual Framework and Related Literature 

Two conceptual frameworks guiding this study are: (1) the role of struggle in learning 

mathematics with understanding, and (2) student self-reflection. The importance of 

students struggling to learn has a long history of proponents including Dewey’s (1933) 

process of engaging students in some doubt or confusion, Piaget’s (1960) restructuring 

their disequilibrium, Handa’s (2003) linking struggle with mathematical engagement, and 

Hiebert and Wearne’s encouraging all students to “struggle with challenging problems” 

to “learn mathematics deeply” (2003, p. 6). In their study, Warshauer, Herrera, Starkey, 

and Smith (2017) examined the development of preservice teachers’ understanding of PS 

in a mathematics content course. The focus of their study was on developing teaching 

practices that 1) support PS in learning mathematics and 2) enhance professional teacher 

noticing to interpret student struggles and student understanding. Despite this, little 

research exists on what PS looks like for prospective elementary, middle grades, and 

secondary teachers. The current study adds to the research base by focusing on PS in 

prospective K-12 mathematics teachers’ perception of their own PS in mathematics 

content courses and allowing them time to reflect on their struggle after they attempted a 

task. Moving PSTs to a deeper understanding by engaging them in reflection on class 

activities is an important aspect in teacher preparation with many proponents (e.g., 

Borko, 2004; Dewey, 1933; Schussler, Stooksberry, & Bercaw, 2010).   

Methodology 

Context (Productive Struggle in Mathematics Content Courses for Teachers) 

This research study was conducted by four mathematics teacher educators (MTEs) 

from a mid-sized university in the Midwest. Three of the four MTEs were the course 

instructors and are referred to as course instructors from this point forward. These courses 

instructors teach content courses in the Mathematics Department. The fourth MTE 

teaches in the School of Teacher Education. Because we sought to understand the 

phenomenon of PS among preservice teachers within three different classes, we found 

that an exploratory case study was the most appropriate design (Creswell, 2013).  

Participants 

The participants were 32 prospective elementary, middle, and secondary teachers 

from three different mathematics content courses. Of the 24 students enrolled, only 21, 
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three males and 18 females, were present and participated from Course A, a required 

course for elementary and middle grades majors with a focus on the conceptual 

development of geometry concepts. Five students, one male and four females, 

participated from Course B, an elective course for mathematics majors who are also 

seeking secondary teaching certification. Another student had stopped attending and was 

not present during data collection. Course B is a problem-solving course that addresses 

content from previous mathematics courses in which the students were enrolled. All six 

students, two males and four females, participated from Course C, a required course for 

middle and secondary majors that is an in-depth study of functions and mathematical 

topics used in teaching pre-calculus and transition-to-calculus courses mainly at the 

secondary level. The students in each class were required to engage in classroom 

discussions and to explain their thinking on all class activities and assignments.  

Data Collection and Analysis  

Our investigation into the role of PS in collegiate mathematics content courses was 

exploratory in nature. Each of the three courses represented a different case in the overall 

exploratory case study. The goal was to identify and characterize the nature of 

prospective teachers’ struggles as they engaged in a non-routine mathematical task in 

each of the three cases. The four MTEs met prior to the lessons to choose, discuss, and 

plan the task (see Table 1) for each lesson. Each of the three course instructors taught one 

lesson, and each presented a different problem-solving activity. During the lesson, the 

other MTEs observed the lesson and took field notes on students’ actions, discourse-

based evidence of student thinking, and evidence and description of student struggle. 

Courses B and C were 80-minute classes that met twice a week. Course A met three days 

a week for 55 minutes. At the end of each of the lessons, the prospective teachers were 

asked to complete an exit ticket that consisted of the following three questions: 1) How 

would you characterize your struggle with the task(s) you worked on today? Be specific. 

2) What interactions with your group helped you progress through the struggle? Be 

specific. 3) What tools did you use to help look for a solution? How did they help you? 

Be specific. 

Once the observation notes and exit tickets were collected, each MTE coded the data 

individually using Warshauer’s (2015) list of four types of student struggles: (1) getting 
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started, (2) carry out a process, (3) uncertainty in explaining and sense-making, and (4) 

express misconception and errors as a guide to developing themes. To ensure the 

trustworthiness of the data analysis, the researchers involved in the study analyzed a 

sample of the exit ticket responses and observations individually, highlighting significant 

statements or quotes that provided an understanding of how the participants experienced 

the task, interpreting the meaning of the statements and developing potential themes 

(Creswell, 2013). After initial themes were developed separately, the researchers met to 

discuss and establish consensus on emerging themes before separately coding the rest of 

the data set for each question. Finally, the researchers met again to come to agreement on 

all responses based on the original set of themes that were developed. This process 

resulted in three categories: group discussion, dynamics, and function; teacher role as 

facilitator; and perseverance and struggle. 

Table 1 

 Mathematical Tasks Descriptions 

 Mathematical Task 

A Pennies Problem Solving Task  
Put 9 pennies heads-side-up in a 3x3 grid so that the edges of the pennies are 
touching. A move consists of choosing a square, turning over the penny in that 
square, and then turning over all pennies touching that first one. How many moves 
must you make and which square must you choose in order to finish with 9 tails-
side-up pennies? What if we had a 4x4 grid? 5x5 grid? Is there a strategy for this 
game?  

B Monkey & Coconuts Task  
Three sailors and a monkey are shipwrecked on a deserted island with coconuts as 
the only source of food. The sailors collect coconuts but decide to divide them in 
the morning. During the night, one by one, each sailor divides the coconuts into 
three equal shares and gives the remaining one to the monkey. This happens three 
different times. In the morning, the sailors meet and once again divide the coconuts 
into three equal piles and again give the remaining coconut to the monkey. What is 
the least possible number of coconuts in the original pile? 

C Roller Coaster Task  
Build a rollercoaster consisting of a piecewise function that is differentiable over its 
entire domain [0,15] with entrance and exit points at (0,10) and (15, 0) 
respectively and a local minimum and maximum of (4,2) and (8,8) respectively. 

 
Findings  

PSTs identified both positive and negative types of struggle in relation to the tasks 

that they completed. Descriptions of frustration/confusion/disengagement or the problem 
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as being too challenging were classified as negative struggle because we found that these 

struggles did not support students in reaching the goal of the task. Positive struggles 

included wanting more time, persevering, and group dynamics and were labeled as such 

because they did support students in either reaching or beginning to reach the goal of the 

task. A discussion with examples of the struggles identified by PSTs is described below.  

Negative Struggle #1: Frustration/Confusion/Disengagement 

Those who expressed frustration or confusion with the task described this confusion 

regarding how to begin solving the task (“The task had me looking for patterns which is a 

difficult concept for me when I don’t know where to start. Before I was given direction, I 

struggled to even begin the task” in Course A). Other PSTs struggled initially but 

described how their classmates helped them to overcome the struggle (“When I was 

given the task to work, I was unsure where to start. Each group member had a different 

idea about what the problem was asking. Overall, I feel like with my group and our 

different ideas, it made it easier to work through the problem by putting all of our ideas 

together” in Course C).  

Negative Struggle #2: Too Challenging 

Some PSTs expressed difficulty implementing or carrying out a process (“I found I 

struggled grasping the concept at first. Making sure I was turning over the right coins. 

Remembering where I started was also something I struggled with” in Course A) or 

encountered an impasse (“Once I had given up on the problem, I did not really participate 

in any discussion, because I hadn’t made sense of the problem myself, thus I couldn’t 

give any feedback when my group was discussing. I feel that it takes me a lot longer to 

solve these problems we are given in class than my other classmates, so I tend to give up 

trying once everyone else has figured out the problem” in Course B). Some PSTs 

described how the groups helped them to overcome the struggle of carrying out a process 

(“Having different inputs helped me see different ways to go about the problems” in 

Course A).  

Positive Struggle #1: Perseverance and More Time 

During the group discussions, PSTs’ experienced difficulty explaining their thinking 

(“The struggle that I found when working on the task was finding the patterns of each 

chip. I also struggled in trying to explain how I got my answer” in Course A). PSTs 
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found that listening to classmates’ reasoning helped them to make sense of the work 

(“Our group discussed what would be the best approach to the problem. Members of the 

group argued or defended their own ideas. Using each of our ideas, the given information 

and deciding which idea worked best was a major part of our discussion. We each 

worked out the problem and compared our work once we agreed on the best way to solve 

it. This assured us that we each knew what was going on while creating new and better 

ideas” in Course C). Many PSTs’ wanted more time to explore the problems (“It was 

definitely challenging working through the problem but not knowing the answer. I wish 

we had more time to try new equations. We had some ideas as a group about different 

approaches we could take, but it was hard not knowing what direction we were meant to 

go in, or if we were on the right track or not” in Course C) 

Positive Struggle #2: Group Dynamics 

In their exit tickets, the PSTs reflected on the role of group members in their struggle 

with the tasks. For example, several PSTs identified group dynamics as having a positive 

impact on their struggles with the tasks (“By us all struggling with it and then putting our 

minds together and figuring it out, like one of the team members saying why don’t we 

work from the outside in, so by us doing so we were successful” in Course A. “I would 

characterize my struggle with the task as a productive type of struggle. While the task 

was frustrating at times, the concept made myself and my group think critically about the 

content we had learned and how it could be properly applied to this new situation” in 

Course C).  

Discussion and Implications 

Our findings showed similarities to Warshauer’s (2015, 2017) work, with two 

exceptions. First, we observed that the emerging themes encompassed more than what 

Warshauer’s team initially represented. As noted in the results, the extending themes that 

surfaced in this study were (in italics): 

o Getting started – Initiating with the task 

o Carrying out process – Continuing with the task 

o Uncertainty in explanation and sense-making – Explaining reasoning 

o Prospective Teacher Reflections 
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With the further definition and a granular look at this angle of research, we found that the 

participants’ struggle expanded beyond the work of the platform provided by Warshauer 

by specifying more refined aspects of “getting started,” “carrying out the process,” and 

“uncertainty in explanation and sense-making.” 

Second, we noticed stark differences among the responses from PSTs in the 

elementary course in comparison to the other two courses. Specifically, we noticed 

differences in comfort level and passion for mathematics among the groups. Among the 

elementary majors, there was a higher occurrence of students with discomfort regarding 

mathematical tasks that initiated mathematical struggle than with the middle grades and 

secondary mathematics group. We hypothesize that this might be due to the self-sorting 

that happens by students choosing what major or career path to take: A difference within 

Course A is that some of the participants are dual certification candidates of Elementary 

and Special Education, further showing passion for helping children of need, but also 

potentially giving us a glimpse into some of their own personal struggles as to why they 

chose to be teachers. Additionally, we wonder if the increased negativity in responses 

from those in Course A was due to a portion of the activity not having a solution.  

In Courses B and C, the middle and secondary mathematics education teachers may 

very well tend to choose mathematics teaching due to positive experiences in 

mathematics class, feel a confidence with their skills, and have a better understanding of 

the content. This was evident among the responses from PST in Courses B and C as they 

tended to be more positive. A potential anomaly that our team has wondered about is 

whether the students in the middle/secondary mathematics courses could potentially have 

self-selected also by self-efficacy, math content knowledge, and abilities. In other words, 

in contrast, the elementary and special education majors could be viewing themselves as 

generalists and not seeing the need to be “experts” with the similar skill-set we are 

pushing all mathematics content course participants to have. 

Although these results come from a small case study, and as such, are not necessarily 

generalizable to a large population, we believe these two differences from Warshauer’s 

(2015, 2017) work offer new insight into the role of struggle in mathematics for PST. 

Specifically, these results seem to indicate that particular attention needs to be paid in 

supporting elementary PST struggle productively in their mathematics content courses. 
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As this group of PSTs, overall, had more negative reflections on their struggle with 

mathematics, it is imperative that we, as mathematics teacher educators, help this 

population develop the tools and mindset needed to approach challenging mathematical 

tasks in productive ways. 

Future Research 

To get at the differences between the groups of preservice teachers—elementary,  

middle, secondary—a potential implication for research would be to do follow-up 

research or add to the research regimen a step that includes asking the three different 

groups why they perceive their struggle in mathematics so differently. By asking this 

question, we may gain insight also into the perception of one group of teachers compared 

to another – potentially leading to another uniquely and culturally impactful study that 

could impact school climate and mathematics learning research. 
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This study investigated the relationship between mathematics anxiety and mathematics teacher 
efficacy among 347 elementary preservice teachers from a southeastern United States university. 
Data sources included the Mathematics Anxiety Rating Scale (MARS), Mathematics Teaching 
Efficacy Beliefs Instrument, and preservice teacher interviews. Findings revealed a significant, 
negative relationship between mathematics anxiety and mathematics teachers’ efficacy. 
Specifically, the preservice teachers with the lowest degree of mathematics anxiety had the 
highest levels of mathematics teacher efficacy. Interviews with preservice teachers indicated that 
their mathematics anxiety is associated with efficaciousness toward mathematics teaching 
practices and is the basis for their mathematics teaching efficacy beliefs.  

 
Theoretical Framework/Related Literature 

  Mathematics educators actively seek to develop and design programs that effectively prepare 

preservice teachers including efforts to reduce mathematics anxiety and enhance mathematics 

efficacy beliefs. An important goal of every teacher education program should be to help 

preservice teachers develop beliefs and dispositions that are consistent with current educational 

reforms and to assist them in addressing their mathematics anxiety (Gresham, 2017). Responding 

to the prevalence of mathematics anxiety among preservice teachers and its implications for 

mathematics teaching effectiveness, studies exist that examine the relationship of mathematics 

anxiety to other constructs. Although there are studies concerning mathematics anxiety in 

preservice teachers and separate studies on teacher efficacy, there is limited research regarding 

preservice teachers’ mathematics anxiety and its relation to mathematics teacher efficacy, 

specifically with elementary preservice teachers.  

   Preservice teachers who experience mathematics anxiety are more likely to have negative 

views of mathematics and teach in ways that develop mathematics anxiety in their students 

(Bekdemir, 2010). Mathematics anxiety as well as low mathematics self-efficacy and 

mathematics teachers’ efficacy beliefs also affect teacher engagement and practice in their future 

classrooms (Taylor & Fraser, 2013).  The instructional methods and pedagogical approaches 

used by college instructors have the greatest impact on shaping preservice teachers’ attitudes and 

views toward mathematics (Nisbet, 2015). In addition, mathematics methods courses that 

integrated reform-based constructivist methods, including hands-on activities and inquiry-based 
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strategies, successfully reduced preservice teachers’ mathematics anxiety levels (Sloan, 2010).  

   Mathematics anxiety is defined as an irrational dread of mathematics that interferes with 

manipulating numbers and solving mathematical problems within a variety of everyday life and 

academic situations and is considered much more than a dislike toward mathematics (Tobias, 

1998). Tobias further describes mathematics anxiety is the lack of comfort that someone might 

experience when asked to perform mathematically and causes low self-esteem, feelings of 

tension, helplessness, mental disorganization, stress, and worry. 

  Teachers’ sense of self-efficacy is a construct derived from Bandura’s (1997) theory of self-

efficacy. This theoretical framework is a two-dimensional construct in which the generalized 

behavior of an individual is based on: (a) a belief about action and outcome, particularly a factor 

that relates to a teacher’s sense of teaching efficacy, or belief that a teacher’s ability to bring 

about change is limited to factors external to the teacher such as parental influences, home 

environment, and family background, and (b) a personal belief about one’s own ability to cope 

with a task, such as a factor that relates to a teacher’s sense of personal teaching efficacy, or 

belief that they have the skills to bring about student learning. When investigating teacher 

efficacy Zee and Koomen, (2016) found that highly efficacious teachers use a variety of 

instructional strategies such as inquiry based instruction, student-centered teaching strategies, are 

willing to use manipulatives, strive to implement new strategies, and share the control of learning 

with their students. Those teachers with a low sense of efficacy are more likely to use teacher-

directed strategies such as lecture, straight text reading, and very little, if any, problem-solving 

strategies in the classroom.  

   Improving the quality of mathematics instruction will help reduce preservice teachers’ 

mathematics anxiety (Beilock & Maloney, 2015). By being aware of preservice teachers’ 

mathematics anxiety and instructional methods that contribute to it or help to reduce it, teacher 

education programs can better identify and support preservice teachers’ needs and provide 

opportunities to raise mathematics self-efficacy and mathematics teachers’ efficacy (Taylor & 

Fraser, 2013). Elementary preservice teachers’ participation in a mathematics methods course 

corresponded to significant increases in mathematics teaching efficacy (Zee & Koomen, 2016). 

Several studies investigating teacher efficacy beliefs indicate that beliefs may account for 

individual differences in teachers’ effectiveness (Suarez-Pelliconi, Nunez-Pena, & Colome, 

2014) and that teacher effectiveness is associated with mathematics anxiety (Gresham, 2017). It 
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does appear that mathematics anxiety may be linked to teacher efficacy. Therefore, the purpose 

of this research study was to investigate the following research questions: (a) What is the 

relationship between elementary preservice teachers’ mathematics anxiety and mathematics 

teacher efficacy?, and (b) What are elementary preservice teachers’ perceptions toward their 

mathematical skills and abilities to teach elementary mathematics effectively? 

Methodology 

Participants and Setting 

     Three hundred forty-seven elementary education preservice teachers participated in the study. 

Of the 347 participants, 332 were female, and 15 were male. All were working toward a K-6 

endorsement in elementary education from the state and had completed at least two university 

mathematics courses and one elementary mathematics content course.  The elementary 

mathematics methods course placed extensive emphasis upon the reform vision of the National 

Council of Teachers Mathematics (NCTM, 2000) including (a) communication, (b) problem-

solving, (c) connections, (d) representation, and (e) reasoning and proof. The course was 

designed to help preservice teachers develop an understanding of mathematics, mathematics 

pedagogy, and children’s mathematical development; and to cultivate a positive disposition 

toward teaching mathematics, and lessen preservice teachers’ mathematics anxiety. The design 

included professional readings, group discussions, writing about the philosophical underpinnings 

of different approaches to teaching and learning with a focus on the role of the teacher and 

students, exploration through hands-on approaches and strategies, and manipulatives use. They 

were also required to design and implement activities and teach a minimum of four investigative 

lessons using manipulatives with children during their 12-week internship experience in the 

schools. Both the instructor and preservice teachers modeled investigative lessons focusing on 

problem-solving strategies, hands-on opportunities, manipulative use, integration of children’s 

literature, and technology. The instructor facilitated discourse with preservice teachers after each 

lesson’s presentation.  

Data Collection and Analysis 

      The Mathematics Anxiety Rating Scale (MARS) developed by Richardson and Suinn (1972), 

the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), (Enochs, Smith, & Huinker, 

2000), and oral interviews were used. Of the 347 preservice teachers, 40 were selected for 40-45 

minute individual interviews (20 with the highest levels of mathematics anxiety and 20 with the 
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lowest levels mathematics anxiety according to the MARS). The interview questions used in this 

study were adapted from Swars, Daane, and Giesen’s (2006) interview protocol. Interviews were 

audiotaped, then coded for themes. 

Findings 

      The results revealed a moderate negative relationship between mathematics anxiety and 

mathematics teacher efficacy among preservice teachers on the MTEBI (see Table 1 and 2). 

Table 1 
Means and Standard Deviations for Mathematics Teaching Efficacy and Anxiety Scores 
Scale Mean Standard Deviation 
MARS 231.69 65.45 
Personal Mathematics Teaching Efficacy Subscale 52.81 8.77 
Mathematics Teaching Outcome Expectancy Subscale 33.57 3.41 
MTEBI Subscales Combine 84.44 8.12 

 
Table 2 
Pearson Product Moment Correlations between Mathematics Teacher Efficacy and Anxiety 
Scores* 

MTEBI MARS Total Score 
Personal Mathematics Teaching Efficacy Subscale -.481** 

Mathematics Teaching Outcome Expectancy Subscale -.022 

MTEBI Subscales Combined -.456** 

*n = 347 
**Correlation is significant at the .05 level (2-tailed) 
 
      Scores indicated that the preservice teachers with higher levels of mathematics anxiety had 

lower mathematics teacher efficacy and the preservice teachers with low levels of mathematics 

anxiety had higher mathematics teacher efficacy.  Analysis of the relationship between the 

MARS and the Mathematics Outcome Expectancy subscale revealed no relationship. Preservice 

teachers’ levels of mathematics anxiety and their beliefs that effective teaching can bring about 

student learning regardless of external factors indicated no significant relationship.  

      Interview data showed the emergence of four themes. These themes related preservice 

teachers’ perceptions toward their effectiveness in teaching mathematics to elementary students. 

These themes included attitudes towards mathematics, mathematics teaching practices, 

foundation of efficacy beliefs, and the description and understanding of mathematics. During the 

interviews, preservice teachers with the highest levels of mathematics anxiety expressed negative 

attitudes towards mathematics. All 20 indicated they did not like the subject, really struggled 
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with the content, and expressed negativity towards mathematics. In contrast, during preservice 

teachers’ interviews those who had low levels of mathematics anxiety indicated positive attitudes 

towards mathematics. Eighteen of 20 indicated they enjoyed mathematics and expressed a strong 

desire to learn as much as they could to help those who did not like the subject. All stated that 

the use of manipulatives, using problem-solving situations, and real-world experiences in the 

mathematics classroom was very important for teaching and motivating students to learn 

mathematics. The use of manipulatives, incorporating problem-solving situations, and real-world 

experiences were a requirement for their investigative teaching experience lessons in their 

internship. They expressed the need for including these strategies for successful learning, 

indicating they would have used them anyway, even if not required. 

      Thirty-eight of 40 preservice teachers felt comfortable with and enjoyed teaching with 

manipulatives. Although 29 of 40 indicated they were unsure in the beginning, they felt that as 

time passed and they became more comfortable in front of their students and with teaching, that 

using manipulatives became an essential learning tool in the classroom. They expressed much 

stress learning how to use manipulatives and use them to teach students. All 40 posited no 

involvement with manipulative use during mathematics learning when they were in elementary 

school. Twenty-four of the 40 preservice teachers interviewed revealed that they believed they 

could teach mathematics effectively. Those that indicated they were unsure had high levels of 

mathematics anxiety. They also stated struggles with the pressure of going to class and 

internship, developing their own lesson plans, having to teach all day, dealing with personal 

issues, and understanding the mathematical content. Some preservice teachers commented about 

difficulties to learn mathematics, lack of help from their parents who had little knowledge of the 

mathematical content, and the challenge to meet their weaknesses in mathematics throughout 

their own school years. Others expressed that they could and did teach mathematics effectively 

because of their understanding of how hard it was to grasp and learn mathematics.  They 

expressed feelings of frustration when doing mathematics, embarrassment, feeling “stupid” in 

front of others, overwhelmed, and anxious; all thoughts held by many with high levels of 

mathematics anxiety. In contrast, those preservice teachers with lower levels of mathematics 

anxiety found that being challenged in mathematics was fun; thus allowing them to create an 

enthusiastic learning environment and positive attitude toward mathematics. 
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Discussions and Conclusions 

 The surveys showed that the preservice teachers who were highly efficacious had lower 

mathematics anxiety levels. Those preservice teachers with higher mathematics anxiety levels 

had lower levels of teacher efficacy. Several of those with high levels of mathematics anxiety 

expressed some efficaciousness. However, they continued to doubt their ability to teach 

effectively due to their mathematics anxiety. The results of the study suggest that mathematics 

anxiety does have a negative relationship with a preservice teacher’s belief in his or her own 

skills and abilities to be an effective teacher. The results from the study supported others that 

described mathematics anxiety as a cause of the lack of preservice teachers’ confidence in 

educational activities (Gresham, 2017; Beilock & Maloney, 2015; Swars, Daane, & Giesen, 

2006). The findings of this study also are consistent with Nisbet (2015), Taylor and Fraser 

(2013), and Swars, Daane, and Geisen (2006) studies. They found that highly efficacious 

preservice teachers had lower mathematics anxiety levels and those that had lower efficacious 

beliefs had higher mathematics anxiety levels. This study’s findings contribute to the research of 

preservice teachers’ mathematics anxiety and mathematics teacher efficacy by having a much 

larger sample size. However, the study also differs because preservice teachers were required to 

teach an investigative lesson using manipulatives to classmates in the methods course. They were 

involved in in both large and small group weekly class discussions on problem-solving 

strategies, hands-on opportunities, manipulative use, integration of children’s literature, and 

technology use within their internship experience. They were also responsible for the preparing 

and teaching a minimum of four lessons within their internship that included manipulatives, 

problem-solving strategies, hands-on opportunities, and children’s literature.  

   The purpose of this study was to provide a more in-depth look at preservice teachers’ 

mathematics anxiety and mathematics teacher efficacy. This study indicated no relationship 

between preservice teachers’ mathematics anxiety and their beliefs that effective teaching can 

bring about student learning of mathematics regardless of external factors. The research by 

Stoehr, (2012) indicated that preservice teachers often exhibit an unrealistic attitude toward their 

abilities to overcome negative external influences. Stoehr expressed that teaching outcome 

expectancy beliefs may actually be difficult to measure due to the number of variables involved. 

Therefore, further research regarding this factor should be conducted. Although the results of this 

study seem to suggest that mathematics anxiety has a negative relationship with mathematics 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 22



teaching efficacy, the interviews indicated that preservice teachers with the highest levels of 

mathematics anxiety were somewhat efficacious about their skills and abilities to teach 

mathematics effectively. The interview results suggest that preservice teachers’ attitudes toward 

mathematics play a crucial role in their beliefs to teach mathematics effectively. Data showed 

that preservice teachers with negative attitudes toward mathematics had the highest levels of 

mathematics anxiety, while those with lower mathematics anxiety levels had more positive 

mathematics experiences. Looking at the interview data from the preservice teachers, this result 

is not surprising. Therefore, teacher education programs should be concerned with helping 

preservice teachers make connections between mathematics and the quality of mathematics 

education needed for everyone. Expecting preservice teachers with both high and low 

mathematics anxiety to have the same confidence levels to teach seems unrealistic. Even if the 

anxiety is low, they are not free from it. NCTM (2014) indicated that all teachers should focus 

upon mathematics content and processes that are worthy of students’ time and attention. 

  Regardless of their mathematics anxiety levels, all preservice teachers interviewed indicated 

the importance of using manipulatives, relating mathematics experiences to the student’s real-

world environment, and motivating them. It is important for the mathematics curriculum to 

provide experiences that help students see the importance of mathematics by modeling a variety 

of problem solving strategies and techniques. Previous studies indicated that instruction focused 

on traditional approaches to teaching mathematics create higher levels of mathematics anxiety 

than those classrooms whose teachers employ more non-traditional practices (Gresham, 2017; 

Sloan, 2010). As preservice teachers discussed their teaching practices all expressed a sense of 

efficaciousness toward using authentic situations that focused on meaningful experiences.  

Conclusion 

    Researchers have long regarded teachers as one of the most significant factors in improving 

children’s learning and educational outcomes. Teachers’ mathematics anxiety and efficacy 

beliefs toward mathematics can powerfully influence how mathematics is taught. It also affects 

how children will ultimately come to view mathematics (Taylor & Fraser, 2017). Many teachers 

in the United States, however, lack the necessary skills and competence to teach mathematics in 

a way that promotes understanding and helps children develop positive mathematical attitudes 

and efficacy beliefs (Zee & Koomen, 2016). There are previous studies that have indicated that 

mathematics methods courses have been effective in reducing mathematics anxiety. The results 
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of this study are consistent with previous research between teacher efficacy and classroom 

instructional strategies (Swars, Daane, & Giesen, 2006). Central to further research is a need to 

determine how mathematics anxiety and mathematics teaching efficacy beliefs influence 

teaching practices and subsequent student achievement. Therefore, if teacher education programs 

hope to influence the development of effective instructional practices, an important part of the 

teacher education program should focus on the development of mathematics teacher beliefs and 

the reduction of mathematics anxiety in preservice teachers.  
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This study examined the self-efficacy of preservice elementary teachers enrolled in a three-
course, three-semester mathematics sequence. The three-course mathematics sequence was 
taught from a constructivist approach and emphasized a socioconstructivist learning 
environment in which the preservice teachers were challenged to construct their own meaning of 
mathematics. Results showed that the preservice teachers’ confidence and readiness levels for 
teaching elementary school mathematics increased by the end of their enrollment in the three-
course mathematics sequence. However, the preservice teachers’ self-efficacy with regards to 
their beliefs that effective teaching can affect student achievement remained the same, suggesting 
further research in this area.  
 

Efforts in mathematics education reform (NCTM, 2000) advocate ideologies consistent with 

constructivist theory for teaching and learning mathematics. Constructivist teaching provides 

opportunities for learning mathematics via participating in meaningful discourse about 

mathematics, constructing one’s own knowledge and understanding of mathematics, and 

reflecting on processes of solving mathematics problems (Steffe & D’Ambrosio, 1995; von 

Glasersfeld, 1983). In light of these reform efforts, current teacher education programs have 

emphasized a constructivist learning environment.  

The purpose of this study was to investigate the extent to which a three-course mathematics 

sequence taught from a constructivist approach would increase elementary preservice teachers’ 

perceived confidence and readiness for teaching mathematics. Research (Hart, 2002) has shown 

that teacher education programs have the propensity to shape teachers’ perceptions of what 

mathematics is important and appropriate to teach and how that mathematics should be taught. 

Further, several research studies (Swars, Hart, Smith, Smith, & Tolar, 2007; Hart, 2002) have 

found that preservice teachers’ self-efficacy beliefs affect how they perceive and think about the 

many ideologies with which they are faced in their teacher preparation programs. Some scholars 

have argued that teachers’ self-efficacy beliefs develop over time and are resistant to change 

(Pajares, 1992). Therefore, in order to effect change with regards to self-efficacy beliefs, teacher 

education programs must provide opportunities for preservice teachers to examine and reflect on 

their beliefs.   
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According to Hart (2002) and Swars et al. (2007), research studies on teachers’ beliefs are 

usually examined in a single methods course. Unfortunately, “if mathematics content is taught by 

lecture and the methods courses use a constructivist environment, the experience is diluted, and 

the chance for change is significantly decreased” (Hart, 2002, p. 5). By contrast, this research 

examined preservice teachers’ self-efficacy and change in self-efficacy beliefs over a period of 

three semesters in which the preservice teachers participated in a sequence of three required 

content mathematics courses, each taught using a socioconstructivist learning environment. 

Theoretical Framework 

The influence of preservice teachers’ self-efficacy beliefs on their conceptions of 

mathematics teaching and learning is well documented in the literature. Although several 

research studies in mathematics education have been conducted on teachers’ beliefs, the authors 

specifically used Bandura’s (1977, 1986) work on self-efficacy to frame this study. Bandura 

(1977) defined self-efficacy as individuals’ viewpoints, perceptions, or judgments of their 

capabilities to succeed. Self-efficacy beliefs influence how persons think, motivate themselves, 

and ultimately, behave (Bandura, 1993). With regards to preservice teachers, self-efficacy beliefs 

influence how they think about mathematics, how they think about teaching mathematics, and 

how they respond to the process of learning to teach mathematics. 

Bandura’s (1977) theoretical perspective on self-efficacy emphasizes two constructs: 

personal teaching efficacy and teaching outcome expectancy. The personal teaching efficacy can 

be defined as a teacher’s belief in their own knowledge, skills, and abilities to be an effective 

teacher. The teaching outcome expectancy can be defined as a teacher’s belief in the notion that 

student learning hinges on effective teaching, and moreover, effective teaching can illicit student 

achievement and success regardless of external factors affecting the student. 

Teacher education programs consistent with past reform efforts (NCTM, 2000) in 

mathematics education emphasize programs in which preservice teachers construct their own 

knowledge and understanding of mathematics and focus on created socially-constructed learning 

opportunities. However, preservice teachers usually enter their teacher preparation programs 

with ideologies and self-efficacy beliefs that are inconsistent with this philosophy for teaching 

and learning. Further, preservice teachers’ self-efficacy beliefs determine how much effort they 

will initiate, expend, and sustain in the face of aversive experiences (Bandura, 1977), such as 

participating in a mathematics learning environment that is paradoxical in relation to their prior 
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schooling experiences with mathematics. This research particularly sought to answer: (a) to what 

extent does participation in a three-course mathematics sequence taught from a constructivist 

approach impact preservice teachers’ confidence and readiness for teaching elementary school 

mathematics? and (b) to what extent does participation in a three-course mathematics sequence 

taught from a constructivist approach increase preservice teachers’ personal mathematics 

teaching efficacy and their mathematics teaching outcome expectancy? 

Methodology 

Twenty-seven elementary preservice teachers participated in a three-course mathematics 

sequence as part of the requirements necessary to complete their teacher certification. Twenty-

five of the preservice teachers were females. Of these 25 females, 21 were Caucasian, one was 

Bosnian, one was Asian American, one was African American, and one was Native American. 

The remaining two preservice teachers were Caucasian males. 

The three-course mathematics sequence was taught over the course of three independent 

semesters. Each course in the sequence focused on a particular set of mathematics topics. The 

focus of the first course was number sense, whole number and integer operations, and algebraic 

thinking.  The second course emphasized the study of geometric concepts with a focus on both 

two- and three-dimensional shapes, and the third course emphasized the study of rational 

numbers, data analysis, and probability. 

 One limitation of the study is that the first author was the instructor of record for each course 

taught in the three-course sequence. Although both authors developed materials for the courses, 

the authors recognize that there is inherent bias due to the first author’s teaching style and 

personality. 

The intent of each course was to emphasize a social-constructivist classroom environment. 

As such, each course emphasized teaching and learning consistent with the philosophy of reform 

in mathematics education (i.e., NCTM, 2000). Further, the preservice teachers were challenged 

to investigate mathematics problems, find their own solutions, and discuss and justify those 

solutions. Mathematics instruction in all three courses emphasized conceptual understanding, and 

as a consequence, the preservice teachers were challenged to determine why specific algorithms 

and procedures worked for solving particular mathematics problems. Also, the preservice 

teachers connected concrete and theoretical mathematical models and used manipulatives, 
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problem solving, and reflection to make sense of concepts and to construct their own meaning of 

mathematics. 

Procedure and Data Analysis 

At the beginning of the first course in the three-course sequence, preservice teachers 

completed the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI) (Enochs, Smith, & 

Huinker, 2000) and then again at the end of the third course in the mathematics sequence. The 

MTEBI consists of 21 items and is a Likert-scale instrument that has five response categories: 

strongly agree, agree, uncertain, disagree, and strongly disagree. Higher scores on the MTEBI 

indicate a greater teaching efficacy with lower scores indicating a lower teaching efficacy. 

Thirteen of the MTEBI items are classified as the Personal Mathematics Teaching Efficacy 

(PMTE) subscale, and eight are classified as the Mathematics Teaching Outcome Expectancy 

(MTOE) subscale (Enochs, Smith, & Huinker, 2000). The PMTE subscale addresses preservice 

teachers’ self-efficacy about their capabilities—specifically, their own knowledge and skills—to 

become effective mathematics teachers. The PMTE consists of the following thirteen items. 

Table 1 

Personal Mathematics Teaching Efficacy 

Item 2 I will continually find better ways to teach mathematics. 
Item 3* Even if I try very hard, I will not teach mathematics as well as I will most subjects. 
Item 5 I know how to teach mathematics concepts effectively. 
Item 6* I will not be very effective in monitoring mathematics activities. 
Item 8* I will generally teach mathematics ineffectively. 
Item 11 I understand mathematics concepts well enough to be effective in teaching elementary 

mathematics. 
Item 15* I will find it difficult to use manipulatives to explain to students why mathematics works. 
Item 16 I will typically be able to answer students’ questions. 
Item 17* I wonder if I will have the necessary skills to teach mathematics. 
Item 18* Given a choice, I will not invite the principal to evaluate my mathematics teaching. 
Item 19* When a student has difficulty understanding a mathematics concept, I will usually be at a 

loss as to how to help the student understand it better. 
Item 20 When teaching mathematics, I will usually welcome student questions. 
Item 21* I do not know what to do to turn students on to mathematics. 
*Indicates negatively stated item 

 
The PMTE was scored as follows: strongly agree = 5; agree = 4; undecided = 3; disagree = 2; 

strongly disagree = 1. Reverse coding was used to score negatively stated items. For example, 

items such as item 3, Even if I try very hard, I will not teach mathematics as well as I will most 

subjects, were categorized as negatively stated items. Therefore, they were scored using reverse 

coding – strongly agree = 1; agree = 2; undecided = 3; disagree = 4; strongly disagree = 5. 
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The MTOE subscale addresses preservice teachers’ self-efficacy about effective teaching 

augmenting students’ mathematics achievement regardless of external factors that may influence 

student learning. The MTOE consists of the following eight items. 

Table 2 

Mathematics Teaching Outcome Expectancy 

Item 1 When a student does better than usual in mathematics, it is often because the teacher exerted a 
little extra effort. 

Item 4 When the mathematics grades of students improve, it is often due to their teacher having found a 
more effective teaching approach. 

Item 7 If students are underachieving in mathematics, it is most likely due to ineffective mathematics 
teaching. 

Item 9 The inadequacy of a student’s mathematics background can be overcome by good teaching. 
Item 10 When a low-achieving child progresses in mathematics, it is usually due to extra attention given 

by the teacher. 
Item 12 The teacher is generally responsible for the achievement of students in mathematics. 
Item 13 Students’ achievement in mathematics is directly related to their teacher’s effectiveness in 

mathematics teaching. 
Item 14 If parents comment that their child is showing more interest in mathematics at school, it is 

probably due to the performance of the child’s teacher. 
 
Although the MTEBI is widely used, and researchers have found it to be both reliable and 

valid, there are some documented limitations. According to Kieftenbeld, Natesan, and Eddy 

(2011), the wording and placement of items in the MTEBI might be sources of local dependence, 

which occurs when some items are near duplicates. Further, items on the PMTE subscale that are 

negatively worded may lead to erroneous analyses (Kieftenbeld, Natesan, & Eddy, 2011).  

To analyze the data appropriately, the authors used descriptive statistics to analyze the 

distribution of the preservice teachers’ responses on the MTEBI. Since this research studied a 

small cohort (n = 27) of preservice teachers, descriptive statistics were used as a way to examine 

propensities across the group with respect to the two constructs – personal mathematics teaching 

efficacy and mathematics teaching outcome expectancy. The authors specifically used the PMTE 

and the MTOE subscales to independently examine two categories of teaching efficacy beliefs. 

Paired-samples t-tests were used to analyze the preservice teachers’ mean score differences 

from pretest to posttest and to compare mean score differences within the group of preservice 

teachers. Specifically, the authors tested the null hypothesis that there were no differences in the 

preservice teachers’ levels of self-efficacy at the end of the three-course mathematics sequence. 

Since the authors were testing the null hypothesis that the two mean scores from pretest to 

posttest were equal, a two-tailed test was used.   
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Findings 

To determine whether participation in a three-course mathematics sequence taught from a 

constructivist approach increased the preservice teachers’ personal mathematics teaching 

efficacy and their mathematics teaching outcome expectancy, the authors used the work of 

Bandura (1977, 1986, 1993) and independently examined the two constructs from the MTEBI: 

Personal Mathematics Teaching Efficacy (PMTE) and Mathematics Teaching Outcome 

Expectancy (MTOE). 

The authors analyzed the mean score differences in self-efficacy and tested the null 

hypothesis that there were no differences in the mean scores from pretest to posttest. As shown 

in Table 3, the authors found that for the PMTE subscale, self-efficacy levels were significantly 

different at the end of the three-course mathematics sequence than at the beginning. This 

suggests that the preservice teachers’ self-efficacy with regards to their perceived capabilities for 

teaching mathematics effectively increased by the end of their enrollment in the three-course 

mathematics sequence. 

Table 3 

Paired-Samples t-test Efficacy Results 

Assessment Mean Standard Deviation t–value  
PMTE 

Pre-Test 
Post-Test 

 
3.915 
4.051 

 
0.486 
0.477 

 
 

2.606** 
MTOE 

Pre-Test  
Post-Test  

 
3.708 
3.741 

 
0.370 
0.417 

 
 

0.462 
N = 27 df = 26 Two-tailed **p < 0.01 

 
However, for the MTOE subscale, the authors did not find a significant difference in the self-

efficacy levels from pretest to posttest. It is important to note here that along with their 

enrollment in the third mathematics content course, the preservice teachers were simultaneously 

enrolled in a block of methods courses and field placements. The methods courses and field 

placements included content areas other than mathematics. It is the authors’ hypothesis that the 

preservice teachers’ teaching outcome expectancy beliefs were the same at the end of the three-

course mathematics sequence as they were at the beginning because of this participation in 

multiple field placements and methods courses.  

Some research studies (Swars et al., 2007) have found that preservice teachers’ mathematics 

teaching outcome expectancy (MTOE) beliefs tend to remain the same during student teaching, 
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while other studies (Hoy & Woolfolk, 1990) have found that preservice teachers’ self-efficacy 

beliefs with regards to their MTOE decline significantly during student teaching. It is the 

authors’ contention that during student teaching or even during participation in multiple field 

placements, preservice teachers may become overwhelmed with being immersed in teaching and 

learning environments that may be inconsistent with the constructivist teaching and learning 

environments emphasized in their teacher preparation programs. Consequently, preservice 

teachers may not feel empowered or may not feel as though they are able to control whether 

students perform well or achieve in mathematics. 

Conclusions 

This research investigated preservice teachers’ perceived confidence and readiness for 

teaching elementary school mathematics. The authors sought to determine whether and to what 

extent a three-course mathematics sequence taught from a constructivist perspective would 

increase preservice teachers’ beliefs with regards to their personal mathematics teaching self-

efficacy and their mathematics teaching outcome expectancy self-efficacy. 

With regards to preservice teachers’ confidence and readiness for teaching mathematics and 

their personal mathematics teaching efficacy, the results of the study show that these self-

efficacy beliefs increased by the end of their participation in the three-course mathematics 

sequence. Although several scholars (Pajares, 1992) have cautioned that preservice teachers’ 

beliefs develop over time, are influenced by prior experiences as students themselves, and are 

resistant to change, this study revealed that preservice teachers’ learning mathematics from a 

constructivist approach and participating in a socioconstructivist mathematics learning 

environment can change their beliefs. However, since this study only examined preservice 

teachers’ beliefs over the course of three semesters, it is unclear whether this change in beliefs is 

lasting change. In other words, it cannot be predicted whether this change in beliefs will continue 

into practice as the preservice teachers become inservice teachers. 

Since the results of the study show that the three-course mathematics sequence had no impact 

on changing the preservice teachers’ mathematics teaching outcome expectancy beliefs, it is 

important to conduct further research in this area. Perhaps the collection of qualitative data such 

as participant interviews could help determine why self-efficacy beliefs in this area are more 

resistant to change than preservice teachers’ perceived confidence in their skills and abilities to 

effectively teach mathematics. 
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Although this study was limited to 27 preservice teachers and cannot be generalized to every 

cohort of preservice teachers who participate in the aforementioned three-course mathematics 

sequence, this study has added to the existing and growing body of literature on teachers’ beliefs.  

In particular, this study has provided insight into the essential components needed in teacher 

education programs to effect change in preservice teachers’ self-efficacy beliefs.  Moreover, 

unlike most studies on teachers’ beliefs that examine the impact on beliefs of preservice 

teachers’ participating in methods courses, this study specifically investigated the impact on 

beliefs of preservice teachers’ participating in content mathematics courses.  In terms of teacher 

education programs' changing preservice teachers’ beliefs, this research study provides evidence 

that although change is difficult, it can happen. 
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A clear connection exists between the need for content-focused professional development and 
student learning; to teach conceptually, teachers must have a deep understanding of the content 
and how students learn that content. This study examines how teachers’ who did and did not 
choose to participate in year-long content-focused training (a) perceived the importance of the 
content-focused training and (b) the factors they considered when deciding whether to attend or 
not attend the training sessions. Overall, math circles were perceived to increase teachers’ 
mathematical knowledge for teaching, confidence in math ability, and reasoning strategies 
needed to teach math through problem solving. 
 

Rationale 

Teachers with the greatest need for improvement in mathematics content knowledge are the 

least likely to take sustained, content-focused professional development [PD] (Desimone, Smith, 

& Ueno, 2006). This becomes concerning as student learning is more likely to improve if the 

professional learning that teachers participate in increases their understanding of the content they 

teach, how students learn the content, and how to represent and communicate that content in a 

significant way (Cohen & Hill, 2000). 

To represent the knowledge needed to teach math, Hill, Rowan, and Ball (2005) defined 

mathematical knowledge for teaching [MKT] as “the mathematical knowledge used to carry out 

the work of teaching mathematics” (p. 373). MKT has been further conceptualized to include 

two domains. First, subject matter knowledge represents knowledge that is purely mathematical 

in nature (Ball, Thames, & Phelps, 2008). Second, pedagogical content knowledge represents the 

content knowledge most connected to instruction (Ball et al., 2008). 

A common means by which teachers MKT may be positively affected is PD (Hill & Ball, 

2009). To understand effective PD, Birman and colleagues (2000) identified six features of PD:  

form, duration, participation, content focus, active learning, and coherence (Birman, Desimone, 

Porter, & Garet, 2000). They identified a longer duration as providing greater opportunities to 
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develop content knowledge and the focus of the PD on content knowledge being directly related 

to teachers’ increases in knowledge (Birman et al., 2000). 

Given the importance of teachers’ MKT on students understanding of mathematics, our study 

is designed to further examine how middle school math teachers who did and did not choose to 

participate in year-long content focused PD (a) perceived the importance of the content-focused 

training and (b) the factors they considered when deciding to attend or not attend the training 

sessions. 

Methods 

Context of the Professional Development 

The study included the participation of middle school math teachers in content-focused PD. 

The PD was led by three mathematics faculty members and one secondary mathematics 

education faculty. The PD was completed in two parts: (1) five PD sessions were held 

throughout the academic school year; referenced as year-long PD, and (2) nine PD sessions were 

held across two weeks during the summer; referenced as summer PD. 

The content of the year-long PD was framed by math circles. Math circles allow teachers to 

learn to understand a problem, experiment with various problem-solving techniques, articulate 

and test those conjectures, and present possible solutions to their peers. The content of the 

summer PD was a combination of math circles and Connected Mathematics Project 3 (CMP3) 

curriculum training. The curriculum training included grade-level sessions that provided 

opportunities for teachers to work and discuss specific units within the curriculum. For teachers 

to receive the CMP3 curriculum, participation in the full nine days of summer PD was required.  

Participants 

The participants included 23 middle school teachers from three counties in the Southeastern 

United States. All 23 attending the summer PD were also invited to the year-long PD; 18 of the 

23 teachers attended at least one of the five sessions within the year-long PD. The 23 teachers 

were from ten partner schools, eight of the ten schools were identified as high needs by 

percentage of students not meeting proficiency levels in Mathematics on the ACT Aspire Test, 

2013-2014. On average, 77.06% of the students from the 10 schools were not meeting the 

content standards for math. 
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Of the 23 teachers, 12 teachers had 0-5 years of teaching experience and 11 teachers had 

more than 6 years of teaching experience. For teacher grade level and certification, see Table 1. 

The category of “Other” represents those teachers teaching more than one grade-level. 

Table 1 

Teachers’ grade level and certification 

 Teacher Certification   
Grade 
Level 

Elementary 
Grades 

Middle 
Grades 

Secondary 
Grades 

Elementary & 
Special Edu 

Middle & 
Special Edu  Total 

6 6 1 0 1 0  8 
7 0 2 0 0 2  4 
8 0 4 2 0 0  6 
Other 1 1 2 0 1  5 
Total 7 8 4 1 3  23 

 
Data Collection and Analysis 

Data sources included two focus group interviews, an end of summer-PD survey, distance 

from each participant’s school to the PD site, and pre- and post- content assessments. Six 

different participants were randomly sampled for each focus group interview, two of whom did 

not attend during the year-long PD and four of whom did attend during the year-long PD. 

  Data from the focus groups and open-ended survey responses were independently open-

coded by the first and second authors. Following the initial coding, themes were independently 

developed around topics related to each research question. Themes were then compared and 

consensus was reached. Data from pre- and post- content assessments were analyzed using a 

paired samples t-test to examine growth in teachers’ content knowledge connected to 

participation in the PD. Finally, quantitative data from the end of PD survey was analyzed using 

bivariate correlation to examine the impact physical distance may have had on teachers’ 

willingness to participate in the PD.  

Results  

Perceived Importance of Content-Focused PD 

Opportunities for learning. Most generally, participants spoke of learning taking place 

every time they attended a math circle meeting. Such learning included an increased confidence 

in their math ability and a learned ability to view problems from multiple perspectives. One 

participant elaborated in saying that problems were approached in ways he/she would have never 
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considered while another participant stated that they were learning to look at problems from the 

perspective of a mathematician. 

Next, the teachers discussed how the math circles provided opportunities for them to learn to 

think in the same manner the CMP3 curriculum requires of their students. One teacher stated, “I 

like being able to be in the same seat as my student versus already knowing the math and kind of 

getting caught up with that struggle” (Participant 4, Focus Group 1). A last manner in which 

learning was commonly discussed related to supplementing the content knowledge of the 

teachers with limited math backgrounds; the learning opportunities provided throughout the math 

circles were described as supplementary math courses or classes. 

The quantitative data provided some evidence that teachers did experience an increase in 

content knowledge connected to their participation in the PD. Results of paired samples t-test 

indicated a positive change that was approaching significance (t = 1.815; p = 0.084), and 

examination of Cohen’s d revealed a medium-size effect (d = .387) for the teachers’ increase in 

content knowledge from the beginning of their participation in the PD to the end. Failure to 

achieve statistical significance was likely due to the limited sample size. 

Few participants were more critical of the learning opportunities, most commonly that the 

content was too difficult. When asked, one participant stated, “The content was by far the least 

effective aspect of math circles. The presenters or professors seems to assume that we are all 

strong in math. Many of us are not” (Survey Response #8). An additional participant felt they 

were in the role of student learner too often. 

Application to teaching. Participants had mixed perceptions of if and how the math circles 

may impact their teaching. First, many participants discussed how increasing their own content 

knowledge would have a direct effect on their teaching. For example, one participant stated,  

I think to, the more we kind of stretch our brains, that gets delivered right back to the kids 
because now I have other ways to present content to them or show them multiple ways to 
solve problems that maybe I wouldn’t have even thought about had it not been for being 
exposed to math circles. (Participant 2, Focus Group 2) 
Other participants shared a similar sentiment in that they appreciated opportunities to try 

problems above their grade level and the confidence that brought to their own teaching. 

Next, many participants felt that the problems within the math circles have evolved to be 

more appropriate for their students and applicable to their classrooms, including discussions 

around how to implement the tasks with students. Numerous participants also described how 
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comfortable the mathematics professors made them feel when struggling with a challenging 

problem and that the professors were teaching them how to react when their own students’ 

struggles. For example, one participant stated, “You’re bringing that back to your kids because 

you realize, oh, I remember last Wednesday what it was like to struggle with that problem so I 

need to take deep breathes, sit back and let’s look at it another way” (Participant 2, Focus Group 

2).  

Those more critical of how the math circles might apply to teaching did not enjoy engaging 

with problems above their grade level, specifically the sixth grade teachers. Few teachers felt the 

math circles would be more beneficial if they were separated by grade-level. Participants also 

felt that the math circles lacked connections to the CMP3 curriculum and/or how they would 

teach that concept. Lastly, multiple participants expressed a desire to have the correct solutions 

provided following math circles for future reference. 

Community building. Teachers’ perceptions of community building included little 

variation. First, teachers often discussed the benefit of collaborating when solving the math 

problems. Likewise, when asked what was the most effective aspects of the math circles, 

multiple teachers discussed opportunities to work with other teachers. The discussions around 

collaboration also included receiving support for teaching. For example, consider how one 

teacher discussed the support received from the collaboration across the meetings: 

…you just started building relationships with teachers from magnet schools, from city 
schools, from county schools just to determine how did you approach this with your kids. 
How did this work? And it will kind of encourage you to do it in your classroom and then 
you begin to share resources and ideas and share lessons and it just makes it, makes it fun 
and it makes it easier (Participant 4, Focus Group 1). 
The relationships developed within the math circles extended support for teaching throughout 

the school year and beyond math circle meetings. One participant discussed the importance of 

maintaining communication with the math circle participants because they have received similar 

training and that they would in turn have a similar perspective.  

Factors Considered when Attending or not Attending PD  

Time and distance. Participants were split in their preference for holding math circle PD 

during the school day versus after school hours. For many, mandated school schedules and 

testing were consistently listed as reasons for not being able to attend. Likewise, teachers 

mentioned the difficulty of being out of the classroom for multiple days. Some teachers 
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mentioned the alternative of having math circle meetings after school while others discussed 

conflicts due to after school obligations, such as coaching or their own children.  

Distance was also a factor we considered when examining teachers’ participation in math 

circles. Analysis of quantitative data revealed a significant negative correlation (r = -0.379, p = 

0.47) between the number of miles teachers had to travel in order to attend the PD and the 

teachers’ overall amount of participation. Five of the six teachers that participated fully in both 

the year-long PD and the summer PD needed to travel less than 10 miles from their school to the 

PD. Conversely, none of the teachers mentioned distance to the PD as an issue within any of the 

qualitative data collection. 

Administrative support. Participants were also split in the support they received from their 

administrators. The participants mentioned that many of their administrators lack a mathematics 

background and because of this, they don’t feel their administrators understand the type of PD 

they need to implement effective math instruction or even what effective math instruction looks 

like. Many of the participants recommended providing additional training for administrators 

around math education.  

Discussion 

The learning opportunities within math circles support teachers in their development of both 

content knowledge and pedagogical content knowledge. Teachers’ development of content 

knowledge was evident through their discussions of learning to examine problems in multiple 

ways, in their collaboration around solving challenging problems, and in the medium effect size 

of content knowledge across the pre-and post-assessment. As a result of increased content 

knowledge, we can expect teachers to be better prepared to explain the reasoning underlying a 

procedure, determine if a mathematical argument is valid, and to select the most appropriate 

mathematical representations within their own classrooms (Ball et al., 2008). In contrast, few 

teachers felt that engaging in problems beyond their specific grade-level was a least effective 

aspect of the math circles, many of which were sixth grade teachers. 

The teachers also discussed their learned teaching strategies, or improved pedagogical 

content knowledge, as result of attending math circles. Many of the participants perceived that a 

combination of the implemented math tasks, getting to see various manners in which others 

thought about that task, and discussions around how students would solve the task would directly 

benefit their classroom instruction. In alignment with literature on effective PD, both engaging in 
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the mathematics and thinking about how students would engage with the math proved effective 

(Garet, Porter, Desimone, Birman, & Yoon, 2001). Opportunities to struggle with math and 

reflect on how the professors responded to these struggles were also discussed as strategies the 

participants would be able to use in supporting their own students. In alignment with 

recommendations for supporting productive struggle in learning, the participants reported that 

their approaches and thinking around a specific math problem were valued over a correct 

solution (National Council of Teachers of Mathematics, 2014).   

The math circles were also effective in developing a community of educators. In the 

teachers’ discussions, it became evident that relationships extended beyond the math circle 

meetings. Also, opportunities to collaborate ranked highest when surveyed about various aspects 

of math circles. Although some literature on effective PD discusses the importance of having all 

teachers within a grade-level attend a PD (Birman et al., 2000), value was shown in collaborating 

with those who may teach in a different setting than themselves. 

When determining the factors teachers considered when attending math circles, time, and 

administrative support were discussed most commonly. Although literature reports the 

effectiveness of PD with a great number of contact hours (Birman et al., 2000; Clarke & 

Hollingsworth, 2001), identifying a common time proves difficult. Administrators were also 

reported to hold varying views of content-focused PD in allowing or not allowing teachers to 

attend; some teachers hypothesized these decisions may have been affected by their 

administrators’ lack of a math background. 

Conclusion and Implications 

The perceived importance of the content-focused PD was evident through opportunities for 

learning mathematics content, an increased pedagogical content knowledge, and the addition of a 

support community. Factors considered when deciding to attend or not attend the content-

focused PD included time, distance, and administrative support. Overall, math circles were 

perceived to increase teachers’ mathematical knowledge for teaching, confidence in math ability, 

and reasoning strategies needed to teach math through problem solving. Likewise, collaboration 

within math circles offered teachers support beyond the PD needed to teach using reform-

oriented math curriculum. 

A first implication of the study is a need for explicit conversations around the importance and 

affordances of increased math knowledge. In attending the same training, some teachers saw the 
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benefit in engaging with challenging math beyond their grade level while others were dissatisfied 

and expressed a desire to only engage in math circles within their grade-level. 

A second implication is a need for conversations or training with middle school 

administrators. As discussed, the teachers participating within this study were from low-

performing schools. It is possible the administrators valued the teachers being present for 

instruction over allowing teachers attending content-focused PD. Given not all administrators 

have a math background, training and/or conversations with administrators are needed around 

effective math instruction and the knowledge need to be an effective math teacher. Likewise, 

given those teachers who need content-focused PD are the least likely to attend, administrators 

are key in ensuring students have access to quality math teachers and instruction (Desimone et 

al., 2006). 
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This paper addresses the question of whether the challenges of learning mathematical proof are 
best theorized as challenges of conceptual understanding in the Piagetian constructivist tradition 
or as challenges of cultural transmission in the Vygotskyan sociocultural tradition. Utilizing a 
genres approach for aligning learning theory with teaching practice, we review the history of 
thought around this question, and analyze strengths and limitations of specific proof pedagogies.  
 

The third part [of our book] focusses on two larger frameworks for examining proving and 

argumentation. The first is argumentation processes which are social processes that occur in 

classrooms …. The second is reasoning processes, which are internal psychological 

processes (Reid & Knipping, 2010, p. xiii – xiv). 

As Reid and Knipping (2010) illustrate in their introduction to Proof in Mathematics 

Education, educational scholarship on proof encompasses two distinct perspectives, a 

sociocultural perspective concerned with acquisition of cultural practices, and an internal 

psychological perspective concerned with reasoning and understanding. This matches 

approaches to educational reform more broadly in its dual concerns for how “knowledge is 

personally constructed and socially mediated” (Windschitl, 2002, p. 137). 

The divergent theorization of learning in psychology has been an enduring issue for 

education (Cobb, 1994; Lagemann, 1989; Sfard, 1998). As Alexander (2007) noted, theorists 

sometimes stake out a “hard theory” stance that insists on a single frame, either “giv[ing] 

primacy to the individual mind … (e.g., radical constructivism) [or else] locat[ing] both the 

source and location of knowledge …within the immediate social context and human interactions 

(e.g., socioculturalism)” (p. 68). Alternatively, others adopt a “soft theory” stance that seeks to 

“connect the cognitive and sociocultural sides of the epistemological debate” (p. 68). 

This landscape of conflicting theorizations of learning reduces the utility of theory: if 

theorists can’t even agree on what theory is suitable, how can we place much stock in the 

implications of theory for teaching? Kirshner (2016) introduced a new strategy for dealing with 

psychology’s multiple theorizations of learning. This strategy eschews the soft theory approach 

of integrating diverse perspectives together—as diSessa, Levin, and Brown (2016) noted in a 
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broad overview of such efforts, to “join perspectives … represents a possible far-future outcome 

of the present work” (introduction). Likewise, we reject the hard theory approach of selecting a 

single perspective as correct, rejecting all others. Instead, the genres approach identifies the 

theorizations of learning that inspire education’s efforts, drawing sharp boundaries among them 

so it is clear which theory is applicable to a given educational circumstance. This strategy 

eliminates the conflict over perspectives that divides educators, and enables genres of teaching—

distinct methods each reflecting a single theoretical perspective—to be drawn with more 

precision than is the case when theories are integrative or when a single theory is being stretched 

over all educational needs. In this paper, we use the lens of genres to examine and critique the 

ways in which Piagetian constructivist theory and Vygotskyan sociocultural theory have been 

used to inform the teaching and learning of proof. 

Constructivist and Sociocultural Framing of Proof 

In recognition of difficulties that undergraduates have with mastery of proof it is now not 

uncommon to find transition-to-proof courses that attempt to orient mathematics students to 

proof prior to enrolment in content courses that depend on proof (e.g., Selden, Selden, & 

Benkhalti, 2017). However, this is a fairly recent development (Moore, 1994, is one of the 

earliest references), and most of the thinking about the challenges of teaching proof (at both 

secondary and tertiary levels) evolved from experiences in which methods of proof are taught in 

conjunction with specific proofs comprising a particular mathematical content area.  

This history of teaching proof in conjunction with teaching proofs, together with lack of clear 

boundaries among psychological theories, has led to conflation of conceptual and cultural 

learning challenges. Clearly, these challenges are separable: the mathematician who spends 

months or years working to prove a theorem is not adrift with respect to the practices of proof, 

but rather struggles with the conceptual complexity of the problem at hand. Conversely, the 

literature abounds with reports of students’ disorientation to the nature of proof. For instance, 

Edwards and Ward (2004) found that undergraduate mathematics majors had difficulty orienting 

themselves to “the role that mathematical definitions play in mathematics” (p. 412)—in the 

culture of mathematics definition is used to stipulate meaning, whereas dictionaries report on 

existing usage. More generally, Baker and Campbell (2004) found many students “either unable 

to comprehend the purpose of this type of writing [proof] or unclear on how to proceed in 
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constructing such arguments” (quoted in Selden, Selden, & Benkhalti, 2017). It is this cultural 

dislocation—not the challenge of conceptual complexity—that animates proof pedagogy. 

Although the distinction between understanding (or generating) a proof versus being adapted 

to proof as an activity system would seem to be straightforward, the history of psychology tends 

to obscure rather than enhance the boundary. This is particularly true of Piagetian theory, which 

initially encompassed both microschemes, which are “‘content’ oriented” (i.e., related to 

concepts) and macroschemes, which are “‘thought’ oriented” (i.e., oriented to practices) (Cobb & 

Steffe, 1983, p. 87). However, when Piaget’s macrogenetic stage theory encountered problems of 

décalage or unevenness of expression, researchers refocused developmental theory on 

microschemes (Steffe & Kieren, 1994). 

These general developments notwithstanding, studies of proof sometimes apply Piagetian 

theory to practices of reasoning as illustrated in the Tall et al. (2012) study of “how individuals 

develop ideas of proof … and how these ideas change in sophistication over the long term” (p. 

13) as the basis for development of proof competencies. Lest there be any doubt that the intended 

framework is Piagetian, this is made explicit later through reference to his stage theory: “In this 

section we discuss the general principles underpinning a learner’s path towards deductive 

reasoning from its sensorimotor beginnings, through the visual-spatial development of thought 

and on to the verbal formulation of proof” (p. 29). 

Complementing the shifting boundaries of developmental psychology is a tendency for 

cognitive psychologists to restrict cultural learning to the affective domain. This is illustrated in 

the Greeno, Collins, and Resnick (1996) cognitive rubric which combines “general cognitive 

abilities, such as reasoning, planning, solving problems, and comprehending language” with 

“understanding of concepts and theories in different subject matter domains” (p. 16). 

Correspondingly, their situative domain (cultural learning) is restricted to a “focus on processes 

of interaction of individuals with other people and with physical and technological systems” (p. 

17). As illustrated in Figure 1, the genres framework—to be discussed in the next section—

redraws the boundaries in favor of a more extensive role for cultural learning. 
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Figure 1. Alignment of the genres framework with a standard learning theory framework 
 
The Genres Approach 

The genres approach parses the domain of learning into three constructs—habituation, 

construction, and enculturation—corresponding, respectively, with the three identified learning 

goals of teacher education: skills, knowledge (concepts), and dispositions (cultural practices) 

(Council for the Accreditation of Educator Preparation [CAEP], 2016). The principal innovation 

of the genres approach is that each of these learning constructs is conceived as independent of 

the others, neither in conflict for supremacy, nor as facets of a multifaceted whole. This enables a 

clearer and cleaner focus on pedagogical implications, organized as independent genres of 

teaching. As indicated in the foregoing discussion, we consider the teaching of proof (separate 

from the teaching of proofs) to be an enculturational learning goal, so we examine only that 

theorization of learning and its associated genre of teaching, here (see Kirshner, 2016, for a more 

extensive treatment). 

Learning as Enculturation: I take enculturation to be the process of acquiring culturally 

particular ways of engaging with people, problems, artifacts, or oneself through enmeshment in a 

cultural community. Internalization of culture is vigorously theorized in the work of Soviet-era 

psychologist Lev Vygotsky; however, the sociogenetic orientation of his work is complicated by 

a more comprehensive ambition to account for “the dual process of shaping and being shaped 

through culture” (Cole, 1996, p. 103). Therefore, we supplement sociocultural theory with the 

sociological theory of Parsons (1951) who identified the unconscious and automatic character of 

enculturation as fundamental: 

Perhaps the most important distinction is between that attitude of expediency at one pole, 

where conformity or non-conformity is a function of the instrumental interests of the actor, 
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and at the other pole the ‘introjection’ or internalization of the standard so that to act in 

conformity with it becomes a need disposition in the actor’s own personality structure … 

The latter is to be regarded as the basic type of integration of motivation with a normative 

pattern-structure of values. (p. 37) 

Teaching cultural practices. Parson’s distinction sets up two subgenres for teaching of 

cultural practices. When the student is self-identified with the reference culture and seeks to 

acculturate her or himself to it, then the teacher need only model mature practices of the culture, 

and perhaps coach the student’s performance. Because adopting those cultural practices fulfills 

the “instrumental interests” of the student, she or he will emulate the teacher’s model. This 

subgenre is called Acculturation Pedagogy (Kirshner, 2016). 

A more delicate and complex Enculturation Pedagogy is needed for the typical case in which 

students are not self-identified with the target culture. In this pedagogy, the instructional focus is 

on the classroom microculture, which the teacher seeks to shape so that it comes to more closely 

resemble the reference culture with respect to the target practices. The students learn from their 

immersion in the classroom community, not directly from the teacher whose influence must be 

unobtrusive. As Yackel and Cobb (1996) put it, desired practices eventually come to be 

“interactively constituted by each classroom community” (p. 475). The teacher exercises 

influence on the classroom microculture through subtleties of attention and encouragement that, 

over time, exert considerable influence on the modes of engagement manifest within the 

classroom microculture (Vygotsky, 1926/1997). 

Enculturational teaching of proof. Enculturation pedagogy is relatively easy to enact in 

case the target cultural practices sometimes manifest themselves spontaneously. But significant 

enculturational goals that are remote from the students’ current practices require a progressive 

agenda; modes of engagement initially encouraged by the teacher reach a level of general 

currency in the classroom microculture, eventually to be replaced by yet more sophisticated 

forms of engagement. Supposing, for instance, one wishes to teach the characteristic mode of 

argumentation known as mathematical proof (Pedamonte, 2007; Stylianides & Stylianides, 2009) 

to young students who typically support their arguments with reference to the authority of 

textbook and teacher—Harel and Sowder (2007) refer to these as “external conviction proof 

schemes” (p. 809). By betraying signs of interest whenever internal conviction arguments are 

offered (regardless how unsophisticated), the teacher may gradually shift the norms of classroom 
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argumentation toward “empirical proof schemes,” even though what ultimately is sought are 

“deductive proof schemes” (p. 809). As in this case, learning of significant cultural practices may 

require a coordinated effort over months and years. 

A Spyglass into the State of the Art of Proof Teaching 

The genres framework of learning theories and pedagogical methods can be used as a tool to 

analyze and evaluate instances of curriculum (Kirshner, 2016). We conclude this paper by 

applying the genres lens to a pedagogical method of teaching proof described in Selden, Selden, 

and Benkhalti (2017). 

Selden, Selden, and Benkhalti (2017) introduces a tool they developed in the context of a 

transition-to-proof course offered to sophomore mathematics students. This tool is a proof 

framework, “a way of structuring a proof, in which the student begins by writing the first and last 

lines of a proof and works towards the middle” (p. 3). Proof frameworks are needed because of 

“students’ tendencies to write proofs from the ‘top-down’ and their reluctance to unpack and use 

the conclusion to structure their proofs” (p. 2). 

The top-down tendency would seem to be a case of too little exposure to authentic proof 

culture. When one reads a proof, one reads it sequentially. But the mental processes in creating 

one, do not match the written form. In fact, the proof framework is a format designed to simulate 

the way in which mathematicians actually construct proofs, which involves reasoning forward 

from conditions and backward from conclusions. 

From this brief description, we see that the pedagogy is acculturationist, but with the teacher 

utilizing coaching rather than modeling. Indeed, the intent is to get “students started. Once they 

get started and begin to write straightforward proofs, they often get a feeling that writing proofs 

is something they really can do”—these are coaching motives. Enculturationist pedagogy would 

take a quite different path in which the teacher works with the current practices of the students, 

rather than direct them to mature practices. As these students are mathematics majors, it is 

reasonable to expect they are identified with mathematics culture, and hence suitable candidates 

for acculturation pedagogy. 

What stands out in Selden, Selden, and Benkhalti (2017) is the energy the instructors have 

put into the coaching function in terms of analyzing the actual practices of proof: “We regard the 

proving process as a sequence of mental (e.g., ‘unpacking’ the meaning of the conclusion) 

or physical (e.g., drawing a diagram) actions. Such a sequence of actions is related to, and 
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extends, what has been called a ‘possible construction path’ of a proof” (p. 3). This energy is 

reminiscent of the extensive research that Polya (1957) conducted into the heuristic methods by 

which mathematicians solve problem and prove theorems. However, Polya’s engagement with 

students was based on the idea that “the teacher should help the student discreetly, unobtrusively. 

… ask a question or indicate a step that could have occurred to the student himself” (p. 1) while 

engaged in actual problem solving. This illustrates his commitment to enculturationist 

pedagogical methods that instill desired practices through cultural enmeshment rather than 

through didactic guidance. Unfortunately, this enculturationist thrust of his teaching was 

subverted by textbooks that explicated and practiced the various heuristics thereby “reduc[ing] 

the rule-of-thumb heuristics to procedural skills” (Stanic & Kilpatrick, 1988, p. 17). 

In this paper we have sought to illustrate through the example of proof, how the genres 

approach brings clarity and power to pedagogical intentions through its alignment of theory with 

practice. 
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Our research focuses on a growth model of teachers’ ability to assess student learning as a 
result of creating equitable instruction for students in informal school settings. We describe 
data collected as part of a study examining the mathematical reasoning of Grades 3–5 
students. Our research context took place in six elementary schools from rural and urban 
settings. Here, we focus on one of the schools by describing how a teacher began her 
instruction and over time, how she developed her assessment strategies to ensure that 
students obtained access to and support for algebraic reasoning, mathematical content, and 
discourse. 
 

Equity research in mathematics education has attracted considerable attention in recent 

years (e.g, D’Ambrosio et al., 2013). Equity can be broken into multiple perspectives such 

as: cultural content, social organization, and cognitive resources (Brenner, 1998). While our 

foci may include all three, we study equitable practice in mathematics classrooms that 

centers on a growth model which highlights how teachers can progress in their disposition 

toward mathematical content and discourse. The research question in this study is how does 

equitable teaching affect teachers’ assessment and instructional practices. 

Related Literature 

Research on Equity 

Equitable instruction or practice in the mathematics classroom is defined as “those teaching 

practices that create fair distribution of opportunities to learn mathematics among students, with 

special emphasis on the learning of students who are members of ethnic and social groups 

currently ‘underperforming’ in mathematics, and those students who depend on schools for their 

primary access to learning” (Goffney, 2010, p. 7). Banks (2001) also states that equity is utilizing 

various teaching strategies and creating a classroom environment that helps students from 

diverse racial, ethnic, and cultural groups attain the knowledge, skills, and dispositions needed to 

function effectively within society. Goffney (2010) and Banks (2001), among many researchers, 

argue against deficit models in equity research, aligning with our beliefs and experiences in 

mathematics classrooms.  
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Research on Assessment as Related to Equity 

Assessment is a way to evaluate whether students and teachers meet a target goal or 

learning outcome. Not only does an assessment determine the outcome of an event, it also 

informs a teacher of two items: 1) what a student can do on a particular problem, concept, or 

task, and 2) how does what the student knows affect instruction. The assessments in this study 

are formative assessments that inform teaching and learning versus a summative assessment 

to assign a score to determine one’s performance. 

The On Track-Learn Math research project provided a unique space for teachers to 

examine their assessment and instructional practices because the teachers taught in a 

nontraditional setting, an after school program. Teachers could experiment with non-routine 

problems and utilize different assessments to determine student learning which allowed them 

to begin to adjust their instructional practices. The research team utilized the Structure of 

Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 1982) to examine what 

teachers and students could do (process, conceptual, and discourse) on a task, which led the 

teachers to develop equitable practices over time.  

Theoretical Framework 

Many researchers have found that the quality of instruction is directly related to teacher 

knowledge and student achievement (Darling-Hammond, 1999; Ingersoll, 2002; Whitehurst, 

2002). However, culture plays an important role in the academic development of students. 

Culture can be conceptualized as the “combination of norms, values, beliefs, expectations, 

and conventional actions of a group” (Phalen, Davidson, & Cao, 1991). Culture is a dynamic 

construct which influences how and what knowledge is produced while also defining 

important differences among learners (Grimberg & Gummer, 2012). Also, students make 

gains when they have a quality teacher (Hill, Rowan, & Ball, 2005) – one who can 

successfully choose a task, provide rich instruction, and orchestrate meaningful discourse. 

However, there exists a paradox of accessible, equitable and successful teaching, learning, 

and assessment outcomes for all students. Here, we posit a possible way to address such a 

paradox by using a sociotransformative constructivist perspective.  

This study uses sociotransformative constructivism as the theoretical lens to guide 

inservice teachers’ use of assessing diverse and multicultural students in an after-school 

program. Sociotransformative constructivism (Rodriguez, 1998, 2010, 2015) merges 
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multicultural education and social constructivist theoretical frameworks as a theory for 

learning and teaching. Rodriguez (1998) describes the four components of 

sociotransformative constructivism: (a) dialogic conversation (b) authentic activity (c) 

metacognition (Idol & West, 1991) and (d) reflexivity. These components are meaningful 

interactions that evolve organically and are facilitated by teachers. Sociotransformative 

constructivism assists teachers in becoming more aware of how issues of power, gender, and 

equity influence who has access to education, and the influence each has over what and how 

subject matter is taught and assessed.  

The Structure of the Observed Learning Outcome (Biggs & Collis, 1982) is a taxonomy 

for assessing students’ understanding of a given task. The SOLO taxonomy was designed to 

empower teachers to apply theoretically based knowledge of student thinking and learning so 

their teaching practices would maximize student achievement. SOLO also merges well with 

the sociotransformative theoretical framework because it provides transitional movement for 

students and teachers to deepen their level of thinking through a cultural and equitable lens. 

The SOLO taxonomy approaches assessment as an ongoing process by informing instruction 

using the prestructural, unistructural, multistructural, relational, and extended abstract stages 

(see Table 1). The stages in the taxonomy take students from knowing one point about a 

problem to knowing multiple points about a problem and describing their thinking and finding 

patterns, to finding multiple solutions or strategies and rules.  

Table 1 

The SOLO Taxonomy 

Pre-structural The task is not attacked appropriately; the student hasn’t really 
understood the point and uses too simple a way of going about it. 

Uni-structural The student's response only focuses on one relevant aspect. 

Multi-structural The student's response focuses on several relevant aspects but they are 
treated independently and additively. Assessment of this level is 
primarily quantitative. 

Relational The different aspects have become integrated into a coherent whole. This 
level is what is normally meant by an adequate understanding of some 
topic. 

Extended abstract The previous integrated whole may be conceptualized at a higher level of 
abstraction and generalized to a new topic or area. 
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In the On Track project, a type of question asked was, “If 100 square tables can seat 202 

people, how many people will be able to sit at 101 tables?” The purpose of this type of 

question was to deepen the student’s understanding regarding the total number of square tiles 

at a particular phase. The highest level of the SOLO (deep understanding and extending) in 

this example would ask the question, can you develop a rule? As tasks become richer in 

nature, the idea is that discussion from students deepens and the understanding between 

teachers and students also deepens. This also aligns with the elements of the 

sociotransformative constructivism framework. 

Here, our research focuses on how one teacher increased her understanding of assessment 

as she developed equitable teaching practices over time. We describe how one teacher began 

her mathematical instruction and how she varied/increased her assessment strategies through 

growth in her practices to ensure that students obtained access to the algebraic reasoning, 

mathematical content, and discourse. It is also our intent to bring to the forefront how 

classroom instruction that balances the structures found in the sociotransformative framework 

and elements of the SOLO taxonomy to assess student learning and produce equitable 

teaching and assessment practices.  

Methodology 

Design and Subjects 

The On Track project included students in grades 3, 4, and 5 and took place in six 

elementary schools (some Title 1) located in both rural and urban settings in the eastern part of 

the United States over the course of two years (4 semesters). Children attended 10 sessions per 

semester, lasting two hours per day, twice a week. Professional development sessions were 

held at the beginning of each semester for one lead teacher and one assistant teacher per 

school. Ongoing and real-time professional development was offered by the research team as 

needed during the filming of sessions. Each session took place directly after school in 

classrooms of the lead teacher. However, in this study we investigate one teacher in one of the 

schools from the larger data set and refer to each semester as a cycle. 

Task and Instruction 

Students, mostly in grade 3, sat in groups of four for this study, and the tasks given 
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included a series of algebraic reasoning questions centering on functions. For example, “This 

machine has a rule that makes new numbers. Your job is to guess the rule.” The question goes 

on to show an input of 1, output of 1; input of 2, output of 4; input of 3, output of 9. Each 

student had a copy of the problem to write on; however, students were encouraged to discuss, 

share ideas (even work together). As they worked the problems, the lead teacher and 

supporting teacher circulated around the classroom offering assistance as needed. For more 

information about the tasks themselves, Store (2013) details the nature of such tasks. 

Evidence and Analysis 

The SOLO taxonomy was used to examine one teacher’s (Ms. Pearson, a pseudonym, also 

referred to as the Lead Teacher) equitable assessment practices over the course of four cycles 

of problem solving in an after-school program of students mostly in Grade 3 for this analysis. 

Unlike other taxonomies, the SOLO taxonomy was chosen because it was designed to 

measure the level of what students are able to do or “learn (to do)” (Brabrand & Dahl, 2009). 

Data collected included video, student work samples, observations, and interviews. Video 

data was viewed separately by each researcher, analyzed, and viewed again together - all 

using the SOLO taxonomy during the process. Attention was given to the types of questions 

the lead teacher asked the students during her work with the tasks. We coded the questions 

asked by the teacher using the phases of the framework (prestructural, unistructural, 

multistructural, relational, and the extended abstract).  

We also performed content validity through selecting algebraic tasks that have been 

measured valid and reliable from experts. The results from the tasks were triangulated through 

the authentic work samples, observations, and interviews. Furthermore, the researchers 

implemented the problems with the teacher participants and determined their level of 

understanding through the SOLO taxonomy, and had discussion with the teacher to validate 

the results. Then, the teacher utilized the same content with Grade 3, 4, and 5 students in the 

after-school program, and these data were collected and analyzed. 

      When we first started the lessons, the teacher was given a script to follow to allow her time 

to become comfortable with the algebraic content. Our intent was for all the teachers in the 

project to veer off the script once they became use to the types of tasks and the style of student 

engagement in the tasks. During the first cycle, Ms. Pearson followed the script verbatim. She 

asked a question, waited for an answer, and then moved on to the next question. For example, 
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Ms. Pearson first started the initial set of tasks with unistructural questioning like, “How many 

sides does it take to make one table?” She did grow to multistructural questions like, “How 

many sides are needed for each of the tables pictured?” but her assessment of the students’ 

answers was underdeveloped. If a child gave an incorrect answer, she moved on to someone 

who had the correct answer without inquiring about the processes of either child’s thinking. 

At the second cycle we began to notice a significant change. Ms. Pearson engaged students 

in both large group and small group discussions. We found this to be an equitable teaching and 

assessment practice in conjunction with the more advanced phases of the SOLO framework. 

For example, she posed a relational question to the entire group, then she and her assistant 

teacher circulated around the room, spending 10-15 minutes with small groups allowing them 

to process and describe their strategies. She prompted the assistant teacher to attend to their 

pictorial representations and verbal descriptions. As if compiling data, she would then bring 

the class together as a whole, and allow them to present their solutions using the document 

camera. If a student had everything worked accurately, she would hold off on allowing them to 

share first to allow mistakes to be a part of every task given. In the act of sharing, many 

students stood at the front of the classroom and self-corrected their mistakes simply because 

they were allowed the space to do so. 

As the project continued into the third and fourth cycles, Ms. Pearson often used 

relational questioning at thoughtful times during their presentations, as well. For example, 

when one student described their work with the pentagonal tables, she followed up by asking, 

“If 2 tables include 9 sides, how many sides will 10 tables include?” This challenging yet 

engaging style of questioning got the students excited because they were already invested in 

the problem. She assessed on the spot that the child was ready for a more sophisticated line of 

thinking about that problem. 

Results and Discussion 

All four phases of the SOLO taxonomy are reported during most of the teaching cycles in 

the On Track project along with equitable teaching and assessment practices. These, as we 

predicted, are difficult to separate due to the nature of a learning environment that creates 

opportunities for all students to make sense of the mathematical content. The very structure of 

the On Track project began with scripted lessons and a narrow focus, which we were 

concerned the teachers may not want to drift away from. One reason we scripted so much at 
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first was because we observed Ms. Pearson and other teachers in the project using a lot of 

direct instruction in their regular classrooms. We wanted to start them out with a familiar 

format for the project. However, as Ms. Pearson met with us (after the second session was 

completed) for professional development, she started bringing in ideas about how the students 

were approaching the task. We showed video examples of reform-based classrooms and this 

inspired her to make changes for the third session as described in the above analysis. 

Through our analysis of the On Track data over, we found that Ms. Pearson grew in her 

confidence, her ability and her content knowledge. Providing targeted professional 

development and allowing teachers to practice the learned strategies in a non-threatening 

environment supports the growth and success of teachers. Ms. Pearson also commented on 

how she began taking the formative assessment strategies back into her regular classroom to 

really analyze student thinking and understanding of the concepts. She believed these 

experiences were beneficial to the mathematical growth of her students that were not 

necessarily in the after school program. The research allowed the teachers to connect rich 

mathematical tasks to targeted learning outcomes, while teachers were able to strengthen their 

assessment strategies and utilize the knowledge they learned about the students’ thinking for 

the following learning episodes, in this case the next after school session. It is difficult to 

capture how teachers assess student learning and utilize this in their teaching; however, Ms. 

Pearson demonstrates this ability, as she increased her questioning skills, the level of 

discourse in the classroom, and her ease and understanding of each of the tasks. Ms. Pearson 

began to think on a more global scale of how to transform the learning of her students with 

respect to the levels of formative assessment found in the SOLO taxonomy. 
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The purpose of this proceeding is to stimulate conversations about the Standards for Educational 
and Psychological Testing (AERA, APA, & NCME, 2014) within mathematics education 
research. First, I describe the five sources of validity evidence, validity arguments, and summary 
statements. Next, this proceeding provides guidelines for researchers intending to publish their 
work focusing on validation, specifically focusing on summary statements. Finally, an example 
summary statement is offered for readers.  
 

Recently, Investigations in Mathematics Learning has published a special issue on validity 

and validation issues in mathematics education contexts but also currently welcomes manuscripts 

focused on validity, validation, and assessment in mathematics education. Measure quality 

strongly influences the quality of data collected and concomitantly, the findings of a research 

study (Gall, Gall, & Borg, 2007). This proceeding aims to stimulate conversations around 

research focusing on validation and sources of validity evidence for educational testing as it 

relates to mathematics education research. It also describes guidelines for reporting validation 

research with quantitative instruments. Moreover, this proceeding may serve the broader 

community as a means to communicate information to potential end users. 

Related Literature 

Standards for Assessment Development  

The American Educational Research Association (AERA), American Psychological 

Association (APA), and National Council on Measurement Education (NCME) provide clear 

standards regarding measurement validity and reliability as it relates to education testing in 

Standards for Educational and Psychological Testing (2014). At a minimum, sufficient evidence 

from a subset of the five sources of validity must be shared: (1) evidence based on test content, 

(2) evidence based on relations to other variables, (3) evidence based on internal structure, (4) 

evidence based on response processes, and (5) evidence for validity and consequences of testing 

(AERA, APA, & NCME, 2014). The amount and types of evidence needed for a measure are 

predicated upon the nature and scope of the instrument (AERA, APA, & NCME, 2014). 

Unfortunately, “evidence of instrument validity and reliability is woefully lacking” (Ziebarth, 

Fonger, & Kratky, 2014, p. 115) in the literature. To make matters worse, evidence related to the 
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validity of results of quantitative instruments are not necessarily conceptualized or defined 

consistently in the research literature (Bostic, 2017; Lissitz & Samuelsen, 2007; Mislevy, 2007). 

Put simply, there are standards for developing and engaging with educational testing that should 

be followed.  

Beyond standards, there is also a stylistic means for communicating why the evidence is 

appropriate and how it addresses the standards. Kane (2001, 2012, 2016) suggests an 

interpretation/use argument and a validation argument within the context of a Toulmin (1958) 

style argument that includes evidence (datum), justification (warrants), and ultimately a claim. 

For instance, evidence for a claim might be that the associated Cronbach’s alpha reliability of an 

instrument used with a representative sample in a particular context is 0.89. The justification 

connecting the evidence and claim might express that Cronbach’s alpha values approaching 0.9 

are considered excellent (Streiner, 2003). Thus, the claim might be that a particular instrument 

produces sufficiently reliable scores that can be used in research and evaluation in a particular 

context. Kane’s style is not the only approach; Schilling and Hill (2007), Wilson (2003; 2017), 

and others are also viable. In the end, it is an instrument developer’s responsibility to 

communicate the argument to potential users in a clear and effective manner so that they are 

fully cognizant of an instrument’s scope (AERA, APA, & NCME, 2014; Wilson, 2017). 

Unfortunately, few articles describing an instrument’s validity evidence go beyond reporting 

reliability or content evidence. If mathematics educators intend to conduct research that builds 

upon works of others and generalizes, then it is prudent to follow the Standards (AERA, APA, & 

NCME, 2014) and be transparent about data collection instruments used in research. 

Justifying a Need for Validation Studies: An Example from Observation Protocols 

Bostic, Lesseig, Sherman, and Boston (2017) conducted a wide search of mathematics 

education research published between 2000–2015 that drew upon classroom observations. One 

goal of this study was to examine the rigor of instruments used within classroom observation 

research.  Manuscripts were drawn from first or second-tier mathematics education journals only 

(see Brigham Young University Department of Mathematics Education, 2008; Toerner & 

Arzarello 2012). While the 2014 Standards may not have impacted authors of papers from our 

sample; assuredly, the 1999 Standards for Educational and Psychological Testing (AERA, APA, 

& NCME) should have been followed. This search resulted in 114 manuscripts involving 

classroom observation but only 44 manuscripts used a classroom observation protocol (COP). Of 
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the 44 manuscripts, 28 unique COPs were mentioned. Thus, the team sought out published, peer-

reviewed manuscripts reporting validity evidence for these 28 COPs. In sum, 11 manuscripts 

reported validity evidence for eight COPs. Thus, it was concluded that 8 of 28 COPs protocols 

had any reported validity evidence found in peer-reviewed publications. This result is gravely 

concerning for many reasons. First, scholars need to know how and where instruments’ results 

and interpretations are valid. If a researcher used an instrument in a way outside of the scope, 

then the results are susceptible to be invalid. Second, failure to report validity evidence prevents 

the greater community from taking up opportunities for further study. As Cobb (2007) expresses, 

the bricolage approach to research works effectively only when the scholarly community can 

confidently and justifiably nestle new knowledge alongside prior work. Third, instrument users 

need information to make qualified decisions about whether a particular instrument is 

appropriate for a given sample. For instance, both the Revised Standards for Mathematical 

Practice (SMPs) Look-for Protocol (Bostic & Matney, 2016; Bostic, Matney, & Sondergeld, 

2017) and Mathematics Classroom Observation Protocol for Practices (Gleason, Livers, & 

Zelkowski, 2017) are appropriate for K-12 contexts. Both protocols focus on teachers’ promotion 

of the Standards for Mathematical Practice; however, it is in the validation papers that one learns 

the former focuses on teachers’ actions whereas the latter examines instructional actions that 

connect teachers and students. Thus, a small change in wording confers a major difference in the 

construct under observation. All of this leads to considerations of other commonly used 

quantitative instruments like content knowledge assessments for teachers and students as well as 

attitude and beliefs questionnaires.  

Reporting Validity of Score Interpretations 

There are not one-size fits all approaches to discussing validity of score interpretations from 

quantitative measures. However, this proceeding provides a few guidelines. In April 2017, 41 

researchers attended the Validity and Measurement in Mathematics Education (V-M2ED; 

National Science Foundation project #1644314) conference. A primary outcome from the 

conference was guidelines for writing summary (aka purpose) statements (Carney, Bostic, 

Krupa, & Shih, 2017). A secondary outcome was helping researchers better communicate 

validity information and arguments. Because validity arguments can take on a particular style, 

conference leaders and attendees agreed that an argument related to validity aspects should 

include three aspects. First, they should frame their chosen validity argument within a particular 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 59



 

style (e.g., Kane, 2012, 2001; Schilling & Hill, 2007; Wilson, 2003, 2017). Second, they should 

briefly describe the chosen framework for the reader. This is important because readers are 

unlikely to be intimately familiar with a particular framework. Third, authors should provide 

sufficient evidence for their claims and purposes. This aligns with the Standards (AERA, APA, 

NCME, 2014), which indicates that instrument developers have sufficient evidence for a claim 

when they feel they have enough for a needed intent (e.g., research and evaluation purposes 

versus formative assessment). Inclusive of this third aspect is communicating a clear summary 

statement. Summary statements are written for the end user and briefly describe the scope and 

nature of an instrument. Fourth, authors should justify their evidence as being appropriate or 

fitting within expected guidelines. That is, readers ought to be able to connect evidence and 

claims through the justification. Finally, readers and instrument developers must re-evaluate 

evidence in light of new knowledge about a construct, using a tool in a different manner, setting, 

or with a different sample, and/or if revisions or alternate forms are necessary.  

A challenge for authors is reporting validity evidence through a coherent validity argument in 

page limits set by journals. How might authors respond to daunting page limits? For instance, 

Investigations in Mathematics Learning has a 20-page limit, which makes it difficult to convey 

all of the information in a meaningful way for potential users. Broadly speaking, there are two 

approaches: (a) Presenting a comprehensive validity argument related to five sources of validity, 

or (b) Communicating a more detailed and focused validity argument for a subset of the five 

sources of validity. Bostic, Matney, and Sondergeld (in press) use a comprehensive approach by 

sharing evidence for all five sources. In this manuscript focused on the Revised SMPs Look-for 

Protocol, the authors make a roadmap of claims, draw upon various forms of evidence from 

quantitative and qualitative research, and connect the evidence and claims using expectations for 

acceptability of evidence (i.e., justification). On the other hand, Kosko (2017) published a 

manuscript that discusses a quantitative measure focused on three sources of evidence: test 

content, response processes, and internal structure. In both instances, the reader learns about the 

assessment, its purpose and focus, and how claims, evidence, and justification are linked for 

facets of an assessment. No matter what style is selected, a summary statement must be 

communicated. A first start for any manuscript describing an instrument and presenting a validity 

argument, is writing a summary statement.  
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Getting Started: Summary Statements and an Example 

A summary statement describes the purpose of a quantitative instrument in a brief manner in 

such a way that an end-user is able to determine whether a particular instrument is appropriate 

for a desired need. At V-M2ED, a series of questions were discussed (see Figure 1). As a result of 

exploring these questions, attendees and leaders determined that effectively answering these 

questions was necessary for a summary statement.  

• What is being measured? 
• Why is it important to measure? 
• How is it being measured? 
• Who is being measured? 
• What is the context for the measurement? 
• How might scores be interpreted? 
• How might scores be used? 

 
Figure 1. Questions for purpose statement. 

 
It may be unclear how to respond to these questions hence, an example summary statement is 

shared below for the Problem-solving Measures (i.e., PSM6, PSM7, and PSM8; see Bostic & 

Sondergeld, 2015; Bostic, Sondergeld, Folger, & Kruse, 2017).  

The Problem-solving Measures (PSMs) measure an individual’s problem-solving 

performance related to the Common Core State Standards for Mathematics (CCSSM). The 

CCSSM include both content and practice standards, which the PSMs address. Specifically, the 

PSMs are connected to the sixth-, seventh-, and eighth- grade content standards. Problem-solving 

performance in relation to content standards is important because problem solving is mentioned 

in every domain of the CCSSM as well as Standard for Mathematical Practice #1 (SMP1; i.e., 

Make sense of problems and persevere in solving them). Therefore, problem solving is a central 

feature of the CCSSM. The PSMs are a series of constructed-response word problems. Each 

PSM contains 15 items representing the five CCSSM domains in these grade levels; there are 

three items connected to each domain. The PSMs are intended primarily for students in grades 

six, seven, and eight. Additionally, the PSMs may also be administered to preservice 

mathematics teachers. Generalizability evidence for both contexts is available. It takes students 

approximately 75 minutes to complete the measure whereas preservice teachers usually need 45 

minutes. There are paper-and-pencil and online versions of the PSMs. No matter the format, 

paper, pencil, and calculators may be used while testing. Responses are scored dichotomously. In 
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past research, scorers are trained; however, there is potential for individuals (i.e., classroom 

teachers, school psychologists, or other researchers) to receive training that aligns their scoring 

with past trained scorers. Results are interpreted in two ways. The first is using Rasch 

measurement. Through Rasch, a set of results can be input and a class report may be shared—

indicating how students’ performance compares to the mean. A second way is using raw scores 

and interpreting performance based on past performance. Both are valid and appropriate score 

interpretation methods but lead to different interpretations. Raw scores indicate rates of correct 

responses whereas results for a class (or individual) analyzed with Rasch modeling communicate 

the individual or class’ performance in comparison to average (mean) ability. Obviously, there 

are differences in expected outcome scores for students and preservice teachers, means are 

higher for preservice teachers. Scores should be used formatively to provide data for students, 

teachers, parents/guardians, and other educational stakeholders. Ultimately, the scores may 

demonstrate longitudinal (i.e., multi-year) growth. Scores may also be used as evidence of 

students’ outcomes within the contexts of teacher-focused professional development or other 

research foci. Finally, scores from preservice teachers intending to teach sixth, seventh, or 

eighth-grade may be interpreted in light of their pedagogical content knowledge. To be clear, 

scores from students should not be used to move them into different mathematics courses or 

other high-stakes fashion. Similarly, scores from preservice teachers are not indicative of their 

mathematics content knowledge but instead, pedagogical content knowledge. The PSMs address 

content that preservice teachers will teach students, not strictly general content knowledge.  

Those interested in using the PSMs should contact the measure authors because cost is dependent 

upon needs related to the PSMs. It should be evident from this summary statement what the 

PSMs measure and how they measure outcomes.  

Conclusion 

The purpose of this manuscript was (a) to provide readers with a sense of the five sources of 

validity evidence, (b) to provide guidance for writing manuscripts focusing on assessment and 

validation, and (c) to offer an example summary statement that might serve as a model for future 

authors. In the last two years, there are more validity studies being published in Investigations in 

Mathematics Learning. No matter authors’ choices to frame their validation studies, a central 

focus must be the Standards (AERA, APA, & NCME, 2014) and communicating information in 
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a clear, coherent manner that validates the outcomes and interpretations from the instrument 

under discussion.   
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The Draw Yourself Doing Math drawing prompt and accompanying rubric is being studied to 
establish reliability and validity of this tool to understand how students view mathematics. This 
report details the efforts made to clarify the drawing prompt phrasing and protocol, the process 
of identifying and describing rubric categories, and the future plans for establishing coding 
reliability and instrument validity. 

Methodology 

The Draw Yourself Doing Mathematics prompt (Bachman, Berezay, &Tripp, 2016) was 

developed to assess undergraduate student views toward mathematics. This piece studies the 

reliability and validity of the prompt and scoring rubric. The study is guided by the seven steps to 

validating education instruments given by Artino, La Rochelle, Dezee, and Gehlbach (2010). 

These seven steps are (a) conduct a literature review, (b) conduct interviews and/or focus groups, 

(c) synthesize the literature review and interviews/focus groups, (d) develop items, (e) conduct 

expert validation, (f) conduct cognitive interviews, and (g) conduct pilot testing.  

Conducting a Literature Review 

In this stage, the researcher “ensures that the construct definition aligns with relevant prior 

research and theory and identifies existing survey scales or items that might be used or adapted” 

(Artino et al., 2010, p. 464). The drawing prompt was first developed to assess changes in 

student views toward mathematics in an experimental general education course pairing 

mathematics and dance (Bachman, Berezay, & Tripp, 2016). Because of the multimodal 

approach of the course, the researchers wanted to find a way to assess students’ pre and post 

views about mathematics that would describe differences in student views about where, with 

whom, and how the doing of mathematics happens. At this time, researchers learned about the 

use of drawing prompts to understand preservice teacher views toward learning and teaching 

mathematics (Mcdermott & Tchoshanov, 2014). The researchers then conducted a literature 

review to examine how drawing prompts were being used to understand student views toward 

mathematics. This review showed that all drawing prompts being used in mathematics were to 

understand preservice teacher views of mathematics, mathematics learning, and mathematics 

teaching (Burton, 2012; Mcdermott & Tchoshanov, 2014; Utley, Reeder, & Redmond-Sanogo, 
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2015). Therefore, a new prompt was needed to understand student views of mathematics.  To 

date, this study has focused on undergraduate student views of mathematics, though local 

teachers have also experimented with giving the prompt to K-12 students. 

To prepare for a conversation with a focus group of RCML participants, the researchers 

collected preliminary drawings based on the prompt “Draw yourself doing mathematics. Don’t 

worry about the quality of the drawing. Just sketch what comes to mind.” (Bachman, Berezay, & 

Tripp, 2016). The research team developed an overall impression score that assigned a numerical 

value from 1 (severely negative) to 7 (extremely positive) and an accompanying rubric 

(Bachman, Berezay, & Tripp, 2016). In this study, the treatment group had a mean increase of 

2.25 points (and median increase of 2 points) on this overall impression score; the control group 

showed a mean decrease of 0.22 points (and median change of zero points) (Bachman, Berezay, 

& Tripp, 2016). The pretest drawings in both classes and the posttest drawings in the control 

class “depicted widespread views of mathematics as an unpleasant endeavor, navigated alone, 

studied at desks, and plagued by unproductive struggle” (p. 56). Based on the rubric categories of 

locating, appearance, and activity used by Farland-Smith (2012) and insight from prevalent 

themes in these drawing, the researchers identified four potential future rubric categories: 

location, activity, others, and affective state.  

Conduct Interviews and/or Focus Groups 

In this stage, the researcher requests input on the formation of the newly developed 

instrument from the population of potential users (Artino et al., 2010). The results on this 

preliminary study were presented at the 2016 RCML Annual Conference to generate feedback on 

the prompt itself and the analysis of the resulting drawings. The experts in attendance generated 

three main questions. First, the attendees wondered about the phrasing of the prompt. Since 

almost all of drawings featured only one person in the drawing (the student), the attendees 

wondered if this could be attributed to the fact that the prompt asks the student to draw yourself 

doing mathematics and suggested testing a prompt that did not include mention of self. Second, 

the attendees wondered whether the limited time given to complete the drawings contributed to 

nature of the drawings. It was suggested to give the prompt as a take home assignment so 

students had more time to think about what they wanted to draw. Third, the attendees wondered 

if the range of responses would be broader than the overall impression could measure if students 

were polled from different mathematics classrooms and suggested giving the prompt to students 
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in a range of mathematics classrooms. The attendees were supportive of the proposed future 

rubric categories. 

Synthesize the Literature Review and Interviews/Focus Group 

Here the researcher decides how to incorporate ideas from the focus group (Artino et al., 

2010). To research the suggestions given at RCML, the researchers administered the prompt in 

12 mathematics classrooms with total enrollment of 357 students. The courses represented were 

prealgebra, introductory probability and statistics, trigonometry, precalculus, calculus, 

mathematics for elementary teachers, linear algebra and differential equations, foundations of 

algebra, and number theory. A new prompt was also tested that read, “Draw what comes to mind 

when you think of doing mathematics.” Each course section was randomly assigned to one of 

four groups: (a) original prompt given in class, (b) original prompt given as a take home task, (c) 

new prompt given in class, or (d) new prompt given as a take home task. 

Prompt wording. Table 1 shows the comparison of drawings from each of the two prompt 

types. The proportion of the drawings that featured more than one person was 0.08 for the 

original prompt and 0.10 for the new prompt. A chi-square test for differences in proportion 

showed no significance difference in the proportion of students that drew someone other than 

themselves in the drawings, 𝜒" 1, 𝑁 = 195 = 0.234, 𝑝 = 0.6284. However, the researchers 

did notice that the proportion of drawings that featured no people seemed higher when using the 

new prompt. Table 1 reports that the proportion of drawings with no people was significantly 

higher when using the new prompt, 𝜒" 1, 𝑁 = 195 = 56.152, 𝑝 < 0.0001. The researchers 

concluded that the original prompt was preferred because it did not affect the degree to which 

students drew other people other than themselves, but the new prompt did affect whether or not 

any people were drawn in the picture. 

Table 1 

Comparison of Prompts 

 
With others 

 
With no people 

  
  

  n Number Proportion 
 

Number Proportion   
Original Prompt 91 7 0.08 

 
3 0.03 

 New Prompt 104 10 0.10 
 

54 0.52* 
 *p< 0.0001 
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Method of administering. When administering the prompt in class and as a take home task, 

the researchers looked at (a) completion percentages, (b) drawing details, and (c) overall 

impression scores. To measure the completion percentages, the researchers kept track of how 

many students were enrolled in each section the prompt was given in and how many prompts 

were completed. Table 2 summarizes the proportion of the class that completed the prompt when 

given as an in-class task and when given as a take home task. While the course instructors were 

asked not to given any extra credit for completing the prompt, one instructor did award extra 

credit to both sections of his course that completed the prompt as a take home assignment. A chi-

square test for differences in proportion showed no significance difference in the proportion of 

students completing the prompt in class and as a take home task, 𝜒" 1, 𝑁 = 357 = 1.892, 𝑝 =

0.1689. However, the chi-square test for differences in proportion did show a significant 

difference in the proportion of students completing the prompt as a take home task with no extra 

credit and those completing it in class, 𝜒" 1, 𝑁 = 282 = 28.949, 𝑝 < 0.0001. There was also a 

significant difference between the completion proportion of students completing the task as a 

take home assignment with and without extra credit 𝜒" 1, 𝑁 = 207 = 11.940, 𝑝 = 0.0005. 

Table 2 

Completion Percentages and Overall Impression Scores for Completion Type 

 
    

Overall 
Impression  

  n Proportion 
Completed 

n           
Original 
Prompt 

Completed Mean Std. Dev. 
In class 150 0.7 38 3.44 1.67 
Take home 207 0.55 64 3.39 1.36 
      Take home – no extra credit 132 0.38 17 3.89 1.17 
      Take home – extra credit 75 0.63 47 3.18 1.4 

 
To compare the details in the drawings, the researchers chose to analyze only the drawings 

that used the original prompt as this prompt was shown to be preferred by this point in the 

analysis. Comparison of the drawings from the three groups showed most detail drawn in the 

responses from students completing the task at home with extra credit, fewer details were drawn 

when completed in class, and the fewest details were drawn when completed at home with no 

extra credit. While differences in details did arise, there were no significant differences in the 
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resulting score using the overall impression scale between the completion types (in class and take 

home t(100)=-0.174, p=0.8619, in class and take home with no credit t(53)=1.004, p=0.3200, in 

class and take home with extra credit t(83)=-0.781, p=0.4371), take home with and without extra 

credit t(62)=-1.866, p=0.0668). The researchers therefore concluded that giving students 10 

minutes in class to complete the prompt is an acceptable way to administer the prompt.  

Range of courses. There were no drawings collected from the 12 classes that the overall 

impression scale would not describe despite the fact that drawings had been collected from a 

much wider range of mathematics courses. The researchers used this wide range of responses to 

help shape the rubric descriptions for the new scoring categories of (a) location, (b) others, (c) 

activity, and (d) affect. 

Develop Items 

The task in this stage is to design items that are clear and understandable (Artino et al., 

2010). Only one adaptation was made to the original overall impression scale in this stage, and 

that was to create a “cannot be categorized” rating of “0” for drawings that cannot be assessed. 

This decision was made because of a drawing collected from a kindergarten classroom by Mkina 

(2017). It is recommended that this category be removed before calculating any statistical 

analysis on the scores of drawings when using the prompt in a study. 

The researchers created four rubric categories for scoring drawings: location, activity, others, 

and affective state. The development of these four scoring categories rest on the prior work of 

Farland-Smith (2012) who scored the categories of appearance, location, and activity using the 

scale of “0” for “cannot be categorized,” “1” for “sensationalized,” “2” for “traditional,” and “3” 

for broader than traditional. Because the researchers wanted to be able to count the number of 

drawings that featured broader than traditional classrooms from the use of mathematics outside 

the classroom, the scale was extended to five scoring possibilities in all the categories except for 

affect: 0 – Cannot be Categorized, 1 – Sensationalized, 2 – Traditional Learning, 3 – Broader 

than Traditional Learning, 4 – Real World. The affective state category has the distinctions 0 – 

Cannot be Categorized, 1 – Negative, 2 – Neutral, and 3 – Positive. 

Table 3 shows the inter-rater agreement for each of the four rubric categories and the overall 

impression scale before and after discussion between two raters. Following the discussion, the 

rubric descriptions were edited to better support future inter-rate agreement. 
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Table 3  

Inter-rater Agreement Before and After Discussion 

  Before After 
Location 0.96 1.00 
Activity 0.78 1.00 
Others 0.94 1.00 
Affective 0.86 0.98 
Overall 0.56 0.96 

 

Conduct Expert Validation 

The goal of this stage is to assess how clear and relevant the items are with respect to the 

construct of interest (Artino et al., 2010). At the 2017 RCML Annual Conference, the researchers 

reported on the work done to date to develop and test the drawing prompt and scoring rubric. The 

feedback from this session centered on next steps needed for validity and reliability testing. The 

experts suggested conducting interviews with participating students as a way of checking the 

rubric coding and gathering attitudinal survey data on the participants to study the correlation 

between validated survey results and the scores from this prompt. 

Conduct Cognitive Interviews 

At this stage, the researcher seeks input on how respondents interpret items to make sure 

items are being interpreted in the manner the instrument designer intended (Artino et al., 2010). 

In the final stage of data collection still to come, participating students will be asked to volunteer 

for a one-hour interview about their drawing and attitudinal survey. A subset of the volunteers 

will be selected so that each overall impression score is represented among the interviewees. 

During these interviews, researchers will ask participants to describe their drawing to check for 

consistency in how the researchers coded the drawings. The interviewer will describe the 

drawing using phrases from the rubric to achieve member checking with the students about how 

the drawings are being interpreted. For example, a drawing coded as Location – 2, Activity – 1, 

People – 1, Affective – 1, and Overall Impression – 2, the interview would ask the student to 

comment on the degree to which they agree with statements like “Doing math happens at a desk, 

involves a lot of unproductive struggle, occurs alone, and is a negative experience for me.” 

Conduct Pilot Testing 

In this final stage of validation efforts, “the researcher checks for adequate item variance, 

reliability, and convergent/discriminant validity with respect to other measures” (Artino et al., 
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2010, p. 464). In the final stage of data collection yet to come, students from a range of classes 

on campus will complete the prompt and the Attitudes Toward Mathematics Inventory (ATMI) 

developed by Tapia and Marsh (2004) to research the content validity of the prompt and rubric. 

The ATMI was chosen to use in this study because it is a validated instrument (Majeed, 

Darmawan, & Lynch, 2013; Tapia & Marsh, 2004) averaging around 20 minutes for 

implementation time (Tapia & Marsh, 2004). 

Following the collection of these drawings and surveys, researchers will code the drawings 

using the rubric categories of location, activity, others, affective state, and overall impression. In 

this coding process, researchers will be measuring the reliability of the rubric using Cronbach’s 

alpha coefficient and conducting a factor analysis of the four subcategories and the overall 

impression scale. Correlation analysis will also be conducted between drawing prompt scores 

and the attitudinal survey scores. 

Further study and Implications 

Results of the cognitive interviews and pilot testing for reliability and validity will be shared 

at the 2018 RCML Annual Conference. Future work will still be needed to validate the prompt 

and rubric for use in K-12 classrooms as this validation effort has been focused on university 

undergraduates. Additionally, the prompt and rubric will still need to be tested for reliability and 

validity at other postsecondary institutions across the United States and in international settings.  

The implication of this finished work is the creation of a reliable, validated survey alternative for 

generating information on student views toward mathematics that can be administered in a few 

minutes. The instrument has great potential for use with students lacking the literacy skills 

needed to take a survey (i.e., age, English Language Learners, and students with learning 

differences).  
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Ninety-eight prospective elementary teachers (PT) participated in a mixed-method intervention 
study aimed at enhancing their development of numerical reasoning. This study examined the 
extent to which PTs learned to notice, state, and apply the commutative property, the associative 
property, and the distributive property. Treatment groups received a series of workshops focused 
on the development of algebraic reasoning. Pre-and post-teaching assessment of learning 
occurred over a period of four weeks, with data gathered from pencil-and-paper tests and one-
to-one interviews. Most PTs showed large gains in their understandings of algebraic structure 
and number properties; effect sizes of the intervention were large. 
 

Background of the Study 

The mathematics component of the common core curriculum (CCSSM, 2010) emphasizes 

the importance of developing algebraic reasoning in the elementary and middle grades. The 

NCTM (2000) Standards suggest that students should be able to “identify such properties as 

commutativity, associativity, and distributivity, and use them to compute with whole numbers” 

in Grades 3–5 (p. 158). However, typical U.S. computational lessons often emphasize steps that 

lead to quick answers and deemphasize a deep understanding of the underlying properties 

(Schifter, 1999; Thompson, 2008).  

Carpenter, Franke, and Levi (2003) stated that children have a great deal of implicit 

understanding of the properties of basic operations, which can be seen when one examines their 

invented algorithms to solve problems involving basic operations. For example, to compute (3 × 

4) × 25, a student may use the associative property (AP) to compute the later two numbers 3 × (4 

× 25) and find the answer easily (NRC, 2001). These structural elements of numbers might serve 

as a bridge to generalize these basic principles when they deal with algebraic expressions and 

equations in later grades (Carpenter, Levi, Franke, & Zeringue, 2005). For instance, the 

distributive property (DP) of multiplication over addition becomes a powerful algebraic tool 

when we consider an expression like “8x + 4x.” By DP, 8x + 4x equals (8 + 4)x or 12x. Indeed, it 

is the DP, which is behind (or justifies) the popular language, used in many school algebra texts, 

that although one can add or subtract “like terms,” one should not attempt to simplify the 

addition or subtraction of “unlike terms.” Hence, 8x + 5x equals 13x, but 8x + 5 cannot be further 
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simplified. The same DP, but thought of in the “reverse direction,” can be called upon to justify 

statements like 5(2x – 1) = 10x – 5. 

Cai and Knuth (2011) drew attention to the two dominant perspectives in algebra education 

research. The first is related to a perceived need to develop students’ algebraic reasoning so that 

they will be able to make strong connections between the arithmetic and algebra. For instance, 

the recognition, formalization, and use of structures within sets of numbers can involve 

reasoning about operations and structural properties with respect to the sets of numbers. Further, 

they can reflect on whether the associative or commutative properties hold for different 

operations when they are applied to different sets of numbers. The researchers also pointed to the 

second perspective, which is related to the importance of supporting teachers’ efforts to foster 

the development of students’ understanding of the properties of operations and how to apply 

them in different arithmetic and algebraic operations. To be able to foster students’ 

understanding of the properties of operations and how to apply them, first teachers should have a 

sound understanding of those properties (Ding, Li & Capraro, 2013). Giving attention to such 

properties is likely to promote algebraic reasoning. However, very few studies have focused on 

elementary teachers’ understanding of fundamental number and structural properties and their 

differences (Ding et al., 2013; Mason, 2008).  

In this study, we specifically examined the extent to which PTs learned to notice, to state, 

and to apply the distributive property and the commutative and associative properties of 

addition/multiplication for real numbers. Part of the study will be concerned with the extent to 

which the participating PT’s developing knowledge and understanding of the associative and 

distributive properties for real numbers helped them not only to formalize the concept of a 

variable, but also to develop a better understanding of what is traditionally regarded as 

elementary or early algebra. 

Theoretical Framework 

The theoretical bases for this study would be a concept image (Tall &Vinner, 1981; Vinner & 

Dreyfus, 1989). The term concept image describes the total cognitive structure that is “associated 

with a concept, which includes all the mental pictures and associated properties and processes” 

(Tall & Vinner, 1981, p. 152). Gagné and White (1978) extended this total cognitive structure as 

being made up of four separable components—verbal knowledge, intellectual skills, imagery, 

and episodes. The design of the study with this theoretical base enabled salient features of 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 74



 
 

concept images to be identified for each participating PST, both before and after teaching 

interventions, and with respect to algebraic structure.  

An imagined scenario, the sequence and content of the thinking stimulated by the operation  

“4 ´ ( ´ 128)” involved:  

• Memory of verbal information (concerning PEMDAS); 

• An attempt to recall appropriate skills (“How do I find the value of 1/4 ´ 128?”); 

• Memory of a relevant past episode (getting a perfect score on a test); 

• Imagery (evoking the associative property for multiplication); 

 For example, when one PT sees 4 × (1/4 × 128), s/he might immediately think the order of 

operations (PEMDAS) and performs the operation in the parenthesis first, while a second PT 

might think about multiplying 4 and 1/4 first, whereas a third PT might think: “Ok. the teacher 

wants to see if I recognize that the associative property of multiplication should be used”. It is 

clear that the second and third ways of thinking are preferable to the first and their concept 

images differ each other.  

 In this study, in order to make sense of the qualitative data, particularly the pre and post 

teaching interview data, we created ordered pairs, which can be used to measure the changes of 

the participant PSTs’ concept images by using Gagné and White’s (1978) components of 

cognitive structure. For a particular component, the extent of evidence was assessed on a three-

point scale, 0 (corresponding to no evidence), 1 (some evidence), and 2 (strong evidence). 

Methodology 

This mixed methods study describes an investigation into the PTs' developing knowledge and 

understandings of key elementary algebraic concepts. The participants were prospective 

elementary teachers enrolled in two sections of a mathematics content course (n = 51) at a 

Midwestern state university and two sections of a mathematics content course (n = 47) at a 

Southeastern state university. One section at each university received the treatment (an 

intervention) and the other section served as the control group. In particular, the participating 

teachers’ growth in their knowledge, understanding and use of algebraic concepts associated 

with the terms “commutative” property, “associative property,” and “distributive property,” were 

investigated. The participant completed a paper-and-pencil Algebra Test as a pretest and a 

parallel version of the same test as a posttest in the spring of 2017. The Cronbach alpha 

4
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reliability of the Algebra Test (pre teaching version) was calculated to be .82, and the post 

teaching version was .83. In addition, 16 students were interviewed at the pre and post teaching 

stages on a one-to-one basis according to the interview protocol recommended by Newman 

(1983) and Goldin (1998). The goal of the interviews was to ascertain how the students were 

thinking about designed task-based, pencil-and-paper instruments. In this study, the following 

framed research questions were addressed: 

1. What did the participating prospective teachers know about each of the commutative 

property, the associative property, and the distributive property, before the intervention lessons 

took place? 

2. What changes in the knowledge and understanding of participating teachers with respect to 

structure was evident after the intervention period? In addition, what were the Cohen’s d effect 

sizes for the treatment and control groups after the interventions? 

3. Immediately after the workshops were completed, were there educationally noticeable 

differences between the concept images of the prospective teachers, with respect to the concept 

images that the students had before the interventions began. 

Intervention 

Teaching intervention constitute a series of workshops conducted during six sessions of 

regular mathematics education content courses, in which the participants explored algebraic 

structures and number properties. The aim for the workshops was to involve all of the students 

actively and expressively in the learning process so that they would achieve an understanding not 

only of the “variables” aspect of statements such as,  (a + b) + c = a + (b + c), (a × b) × c = a × 

(b × c), and a × (b + c) = a × b + a × c, but also of how those properties are vitally important in 

the development of standard ways of operating in elementary algebra (for solving equations and 

inequalities, and creating equivalent algebraic expressions).They also provided justification for 

mental arithmetic calculations (such as finding the value, mentally, of 803 + 798, or finding the 

value of 25 × (4 × 19), or finding the cost of 11 pens at $1.05 each) and developing the number 

sense via enhancing students’ structural understanding.  

Results and Conclusion 

To answer our first research question, we asked PTs to describe the commutative property of 

addition and multiplication, the associative property of addition and multiplication, and the 

distributive property of multiplication over addition in their own words on the pretest. Most of 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 76



 
 

the PTs who were in the treatment group either stated that they did not know about the property 

being asked or they did not correctly describe the property. The percentages of PTs who did not 

know or who did not provide a correct description of the commutative, associative and 

distributive properties were 74%, 93%, and 63%, respectively.  Although many students stated 

that they did not know the property being asked, some provided a description. Examples for the 

incorrect descriptions included but not limited to: 

CP of addition and multiplication: “Move numbers around to solve the equation”, “Figuring out 

one side’s total to help you figure the other side’s total”, etc. 

AP of addition and multiplication: “Write the set of number in any order and still get correct 

solution”, “The associative property is when you either use multiplication or addition to get the 

same value. For example 2+2= 4 and 2x2=4”, etc. 

DP of multiplication over addition: “When you multiply a number into a parenthesis, you 

multiply every number in the parenthesis by that number, Ex: 2 (4x5) = (8x10)”, “You will need 

to use both variables in parts to get the total sum. For example (8x4)(3x5) = 

(8x3)+(8x5)+(4x3)+(4x5) ”, etc. 

To answer our second research question, we examined the differences in the Algebra Test 

scores between the treatment and control groups both before and after the interventions. Before 

the intervention, there was no significant difference between the treatment and control groups. 

(t=.061, df=89, p=.952). However, there was a statistically significant difference in their Algebra 

Test scores between the treatment and control groups after the intervention (t=10.732, df=72.6, 

p<.001). The PTs in the treatment group used the CP, AP, and DP to solve the problems on the 

Algebra Test significantly more than the PTs in the control group. Tables 1 and 2 display the 

descriptive statistics at the pre and posttest level. 

Table 1 

Descriptive statistics at the pre teaching test level   

 
Group N Mean Std. Deviation Std. Error Mean 

Pre teaching  Treatment 52 3.06 2.704 .375 
Control 39 3.03 2.170 .348 
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Table 2 

Descriptive Statistics at the post teaching test level 

 

Group N Mean Std. Deviation Std. Error Mean 
Post teaching  Treatment 52 12.29 5.259 .729 

Control 37 3.57 2.180 .358 

 
According to Cohen (1988), effect sizes above 0.8 can be regarded as “large.” Based on pre 

and post teaching data from the treatment and control group, the effect of the intervention 

groups’ performance was very large (Cohen’s d effect size was 2.11). The effect size was very 

large, and it seemed to be the case that the study’s intervention workshops were effective. 

The items on the Algebra Test did not include just any randomly-ordered and randomly-

chosen symbols. They were designed to invite the applications of the CP, the AP or the DP. (See 

appendix for the sample items on the Algebra Test). On the pretest, most PTs did not attempt to 

use the properties, rather they followed the PEMDAS rule. For example, the typical solution on 

the pre-test to the problem “What would be a quick method of finding the value of 7 x 97 + 7 x 

3? What is the property, which allows you to use that quick method?” was “Multiply 7 by 97 and 

7 by 3, then add them”. At the posttest, the typical solution to a parallel problem “8 x 96 + 8 x 4” 

was “Change it to 8 (96 + 4) to get 8 x 100 = 800”. Most of the PTs who applied this solution 

also provided the name of the property that allowed them to use this method. 

 An example related to the AP of multiplication was the problem: “ Without using a 

calculator find the value of ”. On the pretest, most PTs followed the PEMDAS rule 

and multiplied the numbers inside the parenthesis first. On the posttest, most PTs associated 5 

and 2 first, and therefore computed the answer efficiently. 

An example related to the AP and the CP of addition was the problem “… calculate the value 

of x in this equation “463 + 1999 = 2000 + x” in your head…” The typical solution provided on 

the pretest to this problem was “I would add 463 and 1999 and get a number. Then I would 

subtract 2000 from that and that number would equal x”. At the posttest, many PTs used the 

commutative and associative properties to solve a parallel question, “ ”  The 

typical solution was “I would give 1 from 563 to 999 making it 562 + 1000 to get 1562 = 1000 + 

(72×5)×2

563+ 999 =1000+ x
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x and I would know the answer has to be 562”. Figure 1 shows the AP and the CP in PTs’ 

solution. 

 

  

Figure 1: Sample item for the associative and commutative property of addition.  

 
To answer our third research question, we asked PTs to describe the CP of addition and 

multiplication, the AP of addition and multiplication, and the DP of multiplication over addition 

in their own words at the posttest. Most of the PTs in the treatment group provided a correct 

written description and an example of the properties. The percentages of PTs who did not 

provide a correct description of the CP, AP, and DP at the posttest were 24%, 28%, and 15%, 

respectively.  

The initial analyses of quantitative data revealed that most of the participating PTs’ concept 

images with respect to structural properties changed in educationally significant ways. Many PTs 

took the opportunity to construct their own concept images; they were likely to remember much 

of what they had learned. 
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Appendix 

Algebra Test Sample Questions 
1. A really important property for numbers and for algebra is called the commutative 

property for multiplication and addition. Describe this property in your own words? 
2.A really important property for numbers and for algebra is called the associative 

property for multiplication and addition. Describe this property in your own 
words? 

3. A really important property for numbers and for algebra is called the distributive 
property multiplication over addition. Describe this property in your own words? 

4. Suppose you were asked to calculate the value of 940 + (60 + 403) in your head 
(without writing anything down, or using a calculator. How would you do it, and 
which property would you be using? 

5.What would be a quick method of finding the value of 8 × 96 + 8 × 4 without using 
a calculator? What is the property which allows you to use that quick method? 

6. What would be a quick method of finding the value of 64 ´ (  ´ 160) without 

using a calculator? 
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While elementary preservice teachers (PTs) may remember and apply the invert and multiply 
algorithm for fraction division procedurally, they rarely are able to explain its meaning using a 
scenario. This study examines PTs’ responses to an assessment task that requires them to explain 
the invert and multiply algorithm for fraction division using a context of their creation and its 
related ratio table. Their responses to the assessment task reveal the key concepts that contribute 
to PTs’ conceptualization of the algorithm through their explanations of the “invert and 
multiply” algorithm using fair sharing contexts. 
 

The mathematical practice of modeling requires understanding the relationship between 

mathematical symbolizations and the contexts that they represent. Most research focuses on the 

process of identifying quantities in practical situations and mapping their relationships into types 

of representations such as diagrams, tables, graphs, and formulas to facilitate analysis and to 

formulate answers to questions that arise (CCSS, 2010, Gravemeijer, 1994). A deep 

understanding of mathematical modeling should require not only being able to symbolize 

quantities in a context mathematically, but also to reverse the process by providing contextual 

models for mathematical symbols and processes (Piaget, 1963). Teachers in particular need to 

understand how to model mathematical symbols and processes using contexts. One such 

mathematical process is the invert and multiply algorithm for fraction division.  

Ma’s (1999) analysis of U. S. and Chinese practicing teachers’ explanations of fraction 

division included explorations of both teachers’ procedural reasoning and their ability to create 

contexts for representing fraction division. Teachers were asked to solve and explain their 

solution to a fraction division problem and then to provide a context to model the solution 

process for the problem. Roughly half of the U. S. teachers interviewed provided a successful 

solution process, typically either the common denominator algorithm or the invert and multiply 

algorithm to calculate the solution. Most of the successful U. S. teachers used the invert and 

multiply algorithm. However, only one of the successful teachers produced a context that 

appropriately represented one of the two algorithms. The reported explanation approximated the 

common denominator algorithm although there was no indication of which algorithm the teacher 

used for calculation. Ma’s research suggests that a contributing factor to PTs’ inability to 
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conceptualize the invert and multiply algorithm may be a lack of knowledge about contexts that 

could support meaningful explanations of the algorithm.  

Empson and Levi (2011) observed that children who had been encouraged to reason 

relationally when solving partitive (fair sharing) division problems, used processes could be 

interpreted as using an invert and multiply strategy. To provide PTs with a conceptual 

understanding of the invert and multiply algorithm for fraction division Gregg and Gregg (2007) 

designed an instructional sequence using a context that promoted a fair sharing or partitive 

division model for fraction division. The context was the putting the same amount of cake into 

some number of containers and asking how much of a cake would be placed in one container. 

Initial problems begin whole numbers of containers and partial amounts of cake and eventually 

move to partial containers. In other words, “If ¾ cake fits into ½ a container, how much cake 

would fit in one whole container?” Empson and Levi called these Partial Groups or Partitive 

division problems and describe the problem structure as having a known amount of group(s), a 

known total amount, and asking for an unknown amount per group. The work of Empson and 

Levi and Gregg and Gregg therefore suggested that fair sharing or partitive division contexts are 

appropriate for supporting the explanation of the invert and multiply algorithm.  

Vergnaud (1988) observed that all multiplicative structures such as partitive (fair sharing) 

division are equivalent to proportions. The partitive division model described both by Empson 

and Levi (2011) and Gregg and Gregg (2007) is isomorphic to solving a proportion of the type 

a/b = x/1 such that a and b are known quantities and x is the quantity of interest. Subsequent to 

Gregg and Gregg’s (2007) development of instructional sequences for partitive division of 

fractions, the instructor/researcher (first author) revised and extended their instructional 

sequences to use varied fair sharing contexts and a ratio table representation to promote PTs’ 

development of a contextual model to explain the invert and multiply algorithm for fraction 

division. An assessment tool that reversed the process that PTs experienced in the instructional 

setting for the course was designed to capture PTs’ capacity to explain the invert and multiply 

algorithm using a scenario. This study focuses on what is learned about PTs’ conceptualizations 

of the invert and multiply algorithm through the use of the assessment tool. 

Methodology 

The setting for the study was a university in the Pacific Northwest. As part of a first content 

course for elementary teachers, PTs were introduced to solving fair sharing problems with 
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fractions as a model for conceptualizing the “invert and multiply” algorithm for fraction division. 

PTs received a homework assignment similar to the assessment that required them to explain the 

invert and multiply algorithm using a context. They were encouraged to work in study groups 

and with the instructor on similar tasks prior to the assessment. The assessment consisted of three 

items one of which was designed to capture PTs’ conceptualization of the invert and multiply 

algorithm. The assessment item from which the data is collected is composed of a fraction 

division problem such as 7/5 ÷ 2/3 = ? followed by the prompts:  

• Number sentence/context. Write a number sentence for the problem using units from 
an appropriate scenario for the “invert and multiply” algorithm. 

• Ratio table illustration. Create a labeled ratio table to illustrate the solution using the 
scenario you chose.  

• Written explanation. Explain the “invert and multiply” algorithm using the scenario 
from your solution. 
 

The data set consisted of all responses to the assessment item from all PTs who participated 

in the content course for elementary teachers—105 PTs total for two sequential quarters. For the 

assessment, PTs worked on their own in one sitting and submitted their work to the instructor 

upon completion. Although a set amount of time was not allotted to the assessment, the 

maximum time taken for the whole assessment was typically one hour, one third of which was 

attributable to the item reported here.  

The theoretical foundation for the data collection and analysis is a constructivist frame as 

articulated by Von Glasersfeld (1995) and grounded theory as articulated by Strauss and Corbin 

(2015). The constructivist frame supports the use of PTs’ assessment responses for providing 

evidence of PTs’ conceptualizations of the invert and multiply algorithm. Although the 

researcher cannot watch how a PT builds her/his concepts, the concepts can be investigated by 

examining the words, symbols and other tools PTs use in their responses to describe intended 

quantities and their relationships and by examining their responses for elements the associated 

concept should include to reflect the quantities and their relationships adequately.  

Grounded theory supports the use of a constant comparative method to code PTs’ responses 

to the assessment item and to generate cases from the analysis of the coding to develop a theory 

of the contribution of proportional reasoning (equivalent ratios) as represented by fair sharing 

problems and ratio tables to conceptualization of the “invert and multiply algorithm” for fraction 
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division. PTs’ responses to the number sentence/context task, solution illustration task, and 

written explanation task were compared and contrasted separately and together for evidence of 

contributing evidence for both understanding a contextual representation of division and how the 

contextual representation could be used to explain the “invert and multiply” algorithm for 

fraction division. For the number sentence/context task, responses were categorized for the types 

of scenarios PTs created: fair sharing (partitive), measurement (quotitive), multiplication or 

other. For the solution illustration task, PTs’ responses were categorized for whether or not the 

illustrated solution processes using ratio tables or pictures could represent proportional reasoning 

with the quantities in the scenario from the number sentence/context task and if not what other 

categories of reasoning were evident. For written explanation task, PTs’ responses were 

categorized for: (a) the focus of the explanation such as context, process, or procedure and (b) 

the correspondence between the representation of the solution in ratio table and the written 

explanation of the solution—i.e., could the process described in the explanation be the same 

process illustrated in the ratio table. Additionally, the written explanations were categorized for 

evidence of conceptualization of the algorithm through answers to the following questions that 

relate the responses across the three tasks: 

• Does the written explanation use the scenario from the number sentence/context and the 
ratio table to explain each part of the solution process illustrated? 

• Is the solution process in the ratio table reasonable and complete for the context created 
and does it align with proportional reasoning? 

• Does the written explanation also explicitly use the solution process described with the 
scenario in the ratio table to make sense of the associated process within the “invert and 
multiply” algorithm? 

• Does the scenario in the number sentence/context contribute to or inhibit the written 
explanation? 

Important to understanding and validating the data collection and analysis is the 

acknowledgement that the researcher and instructor of the course are the same. The 

researcher/instructor makes a claim to have expertise in analyzing students’ productions for 

representations of knowledge of the topic of instruction because of her instructional experience 

in teaching and assessing students’ reasoning on the topic using the curricular materials based on 

the research of Empson and Levi (2010) or created by Gregg and Gregg (2007). Trustworthiness 

is also supported through the triangulation of the data through using multiple types of questions 
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that comprise the data, the collection of the data across multiple groups and times and to the 

close attention paid to what the PTs’ write in their explanations and how they write them (Strauss 

and Corbin, 1998).  

Cases 

The categories generated for conceptualization of the algorithm were subsequently analyzed 

to create the following cases. The cases have been compared and ordered on the category of 

conceptualization of the algorithm from least representative of conceptualization to most 

representative of conceptualization.  

No Meaning for Math Symbol Sentences Yet 

PTs in this category might rewrite the division problem given (7/5 ÷ 2/3 = ? ) as a 

multiplication sentence for (1) such as “7/5 brownie x 2/3 serving = ? brownie in one pan” or 

reverse the quantities in the division problem. The process described in the ratio table that they 

create may represent an appropriate scenario for the given division problem or the reversed 

division problem. Their explanation may follow the process described in the ratio table, but it 

could lack appropriate details, use inconsistent units, or refer to unrelated concepts. For example: 

“I have 7/5 brownie and 2/3 of a brownie is a serving. I am trying to find how many brownies 
per pan. I start with 2/3 and multiply by ½ to get the amount for 1/3, which is 7/10. Then 
when I multiply what happens is I am making the 7/5 into 1/10 because I cut the 1/5 into 1/10 
to get the amount with the same size pieces, which is 1/10’s. I must find this and then I 
multiply to find the amount of brownies per serving.” 

The evidence suggests a procedural process for the solution and explanation but little or no 

understanding of how to use a context to give a symbol sentence meaning. 

Lack of Proportional Reasoning 

PTs in this category often have difficulty solving the problem using a ratio table. They may 

add amounts to “find” solutions or divide 2/3 by 2 and multiply 7/5 by 2 as their initial step in 

the process for solving 7/5 ÷ 2/3 = ?. Their explanations may revert to descriptions of the 

algorithm even if they begin with an appropriate scenario such as “7/5 cups of flour are 2/3 

recipe. How much flour is used for one recipe?”  

“When you invert and multiply you are actually using a ratio to solve the equation. When 
you invert you are trying to find the scalar factor for the ratio table. Inverted means you are 
switching the 2/3 into 3/2 and then multiplying the 7/5 by the 3/2.” 
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Although the PT claims ratios were used to solve the problem, the ratio table showed 63/10 cups 

of flour were used for 1/3 recipe. The final ratio in the table 21/10 cups for 1 recipe suggests the 

PT used a different process to find a solution.  

Misunderstanding Multi-digit Fractions 

A number of PTs seem to have difficulty understanding multi-digit fractions. They may have 

created an appropriate scenario for 7/5 ÷ 2/3 = ? such as “7/5 cups of sugar is in 2/3 of a recipe. 

How many cups of sugar is in one recipe?” And in their ratio table they know to multiply 7/5 

cups and 2/3 recipes by the same amount to find how much cups of sugar is in 1/3 recipe. 

However, they think 1/3 recipe is 1/3 of 2/3 recipe and multiply 7/5 cups by 1/3 as well to get 

7/15 cups for 1/3 recipe. They often report a result of 21/15 for the solution to 7/5 ÷ 2/3 and their 

explanations describe the process from the ratio table using the scenario. 

Confusion from Misaligned Scenarios 

Some PTs create a measurement division scenario rather than a fair sharing division scenario. 

They may be able to solve and illustrate the problem appropriately in the ratio table, and they 

may be able to explain the process meaningfully using the scenario, but they become confused 

when connecting their explanation to the “invert and multiply” algorithm. For example the 

following explains 7/5 cups ÷ 2/3 cups/recipe = ? recipe: 

“When you invert and multiply you are really taking the 2/3 cups and dividing that into 2 
pieces to get 1/3 cups and you have to divide the 1 recipe by 2 to get ½ recipe. You then 
divide the 1/3 by 5 and the ½ by 5 to get 1/15 cups for 1/10 recipe. Then you multiply by 7 to 
get 7/5 cups for 21/10 recipe. Inverted means to flip the fraction upside down… This made 
more sense with other numbers.” 

In the section covered by the ellipsis, the PT appropriately described what each of the elements 

of 7/5 x 3/2 represented within the scenario. However, the PT attributed the complexity in the 

explanation of the algorithm to the “numbers” rather than the choice of scenario. 

Process Based Explanations 

Some PTs appropriately solve a division problem using a context, but their explanations 

focus on only one of the two units involved. Usually, it is the unit that results in 1 whole at the 

end of the process. For example: 

“Since I have 2/3 serving and I want to find 1/3 serving I multiply by ½ and this is where the 
2 in 2/3 flips to the bottom and is multiplied. And then to find 1 serving we multiply the 1/3 
by 3 in order to get 3/3 which is 1.” 
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These explanations often feature connections to the “invert and multiply” algorithm and suggest 

conceptualization of the algorithm. However, they focus on the solution process and lack the 

supportive details that provide meaning. 

Solving Without Connecting to Algorithm 

Many PTs are able to appropriately solve and meaningfully explain a division problem but 

may not explicitly connect the process to the “invert and multiply” algorithm or may have 

unclear or inaccurate descriptions of how the process connects to the algorithm. In the following 

example for the scenario 7/5 cups ÷ 2/3 serving = ? cups/serving, the underlined sentence is 

unclear in its meaning for either the scenario or the algorithm although the explanation of the 

solution process using the scenario is meaningful and clear. 

“We know we have 7/5 cups for 2/3 serving. Our goal is to find how many cups go into 1 
serving. First if we multiply by ½ we will find how many total pieces we will have. Then if 
we multiply by 3 we will see how many pieces of the whole we actually used. In our case we 
had 7/5 cups x ½ = 7/10 cups which is 1/3 of a serving. Then we multiply 3 by our servings 
to get 1 whole serving and 7/10 x 3 = 21 cups for 1 serving.” 

“Invert and Multiply” Contextual Explainer 

The following explanation is an exemplar of PTs’ who were categorized as having 

conceptualized the algorithm. The PT represented 7/5 ÷ 2/3 = ? by the scenario “2/3 serving is 

7/5 cookies. How much cookie is in a full serving?” and explained: 

“My first step for finding number of cookies in one serving was to go from 2/3 of a serving 
to 1/3 of a serving. In order to do this I had to multiply 2/3 by ½ since 1/3 is half of 2/3. I 
simultaneously multiplied 7/5 by ½ because of the scalar relation. This is when the numerator 
gets flipped and multiplied in 2/3 serving. Once I find 1/3 of a serving, all I have to do is 
multiply 1/3 serving by 3 to get 1 whole serving. I also simultaneously multiply 7/10 by 3 
because of the scalar relation. This is when the denominator gets flipped and multiplied in 
2/3 serving.” 

Cross Analysis and Conclusion 

The cases generated from PTs’ responses to the assessment item provide a range of the PTs’ 

conceptualizations of the “invert and multiply” algorithm. They reveal key features of 

understanding mathematical processes such as the “invert and multiply” algorithm. The fraction 

and proportional reasoning concepts that PTs develop to be able to explain the invert and 

multiply algorithm using fair sharing contexts include the following: 

• The multiplicative relationship between a multi-unit fraction and its related unit fraction, 
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• The multiplicative relationship between a unit fraction and its related whole, 
• Coordination of units in a proportional relationship, 
• Multiplicative relationships between equivalent ratios, 
• Contextual representations of proportions,  
• Fair sharing situations represent proportions, and 
• Conceptualization of the “invert and multiply” algorithm requires proportional reasoning. 

The use of scenarios to explain the “invert and multiply” algorithm provides a rich venue for PTs 

to develop proportional reasoning and to revisit their understanding of fraction relationships as 

well an opportunity to prepare to teach the algorithm meaningful. However, it does not represent 

the only method for PTs’ to explore the meaning of the “invert and multiply” algorithm. Other 

explanations of the “invert and multiply” algorithm should be explored and connected to the use 

of scenarios. Additional research should explore whether the developed here cases may represent 

a learning progression for the development of key concepts that contribute to the 

conceptualization of the algorithm. 
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This study investigates the use of a fluency-building routine in an arithmetic course for 
elementary teachers. This paper highlights strategies used to develop fluency with whole number 
operations; fraction, decimal, and percentage comparisons and operations; and estimation. 
These strategies focus on building multiple ways of arriving at an unknown answer by working 
from what students already know and understand. This paper also details the methods used to 
collect data that describe student experiences with this routine. 

Rationale 

Seaman and Szydlik (2007) explain, “Many preservice teachers begin their education 

programs unable to perform basic computations or to explain fundamental mathematical ideas” 

(p. 178). Given that preservice teachers are eventually expected to foster procedural fluency with 

their own students, the argument by Seaman and Szydlik presents a multi-faceted challenge for 

mathematics teacher educators. Not only must mathematics teacher educators foster fluency with 

preservice teachers, which is one of the five strands of mathematical proficiency (Ball, et al., 

2005; National Council of Teachers of Mathematics [NCTM], 2014; National Research Council 

[NRC], 2001), they also must help preservice teachers develop high-leverage teaching practices 

that enable their students to build procedural fluency from conceptual understanding (NCTM, 

2014). Consequently, building procedural fluency must be a point of emphasis in preservice 

teacher education (Conference Board of the Mathematical Sciences [CBMS], 2012; NCTM, 

2014; Seaman & Szydlik, 2007). 

Being fluent means choosing methods or strategies appropriate for the given problem and 

efficiently producing and explaining accurate answers (NCTM, 2014). Some of the necessary 

components for fluency are: automatic recall of addition and multiplication combinations of 

integers 0 through 10; addition, subtraction, multiplication, and division of multidigit numbers 

both through the use of mental math strategies and standard algorithms; estimation; and the 

application of procedures with flexibility, understanding, and accuracy (Ball et al., 2005; NRC, 

2001). Building fluency with preservice elementary candidates requires regular entrenchment in 

the culture and habits of mathematical thinking so that preservice teachers realize that 
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mathematics is much more than memorizing and applying formulas and procedures (CBMS, 

2012; Seaman & Szydlik, 2007). 

Instructional Methodology 

This study took place in an arithmetic course for elementary teachers at a public, open 

enrollment university. While most of this course focuses on equipping students with conceptual 

understanding of pre-established rules, operational meaning, appropriate representations of 

mathematical ideas, and authentic problem-solving opportunities, one long-standing course 

requirement has been that preservice teachers be able to demonstrate procedural fluency with K-

6 arithmetic. Instructors assess students’ fluency by administering a series of three computational 

fluency exams. To support students in achieving procedural fluency, the course utilizes a daily 

fluency routine, which is described in detail below. 

Establishing a Routine 

Each student keeps a mathematical fluency journal where she documents all the work done to 

build procedural fluency. Journals are graded for completeness and growth achieved with 

fluency. During the first week of the course, students take a computational fluency exam, which 

is comprised of 25 questions that test computational fluency for addition, subtraction, 

multiplication, and division of whole numbers, fractions, and decimals. Some of the problems 

test facility with associated algorithms, and some of the problems provide opportunities for 

students to use mental math strategies. Students have three opportunities during the semester to 

pass the exam with an 80% or better, which is a requirement for passing the course. 

Instructors lead discussions with students about what procedural fluency is and why it is 

important for preservice teachers and their future students. To make this point, students are asked 

to think about several ways to get from campus to their house, and then they are asked to 

consider, “Why would you choose one of the routes over another?” The students cite reasons 

such as time, weather, traffic, and after school errands as reasons. The analogy is completed by 

explaining that mathematical fluency is the ability to look at a problem, think of several ways to 

approach a problem, and choose a particular method because it is best suited to the problem and 

the knowledge of the solver.  

Finally, during the first week, students complete the Mathematical Fluency Indicator at 

home. This indicator gives students targeted feedback on which areas of fluency they need to 

concentrate their efforts. The indicator is divided into four sections: addition, multiplication, 
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fraction to decimal conversions, and estimation. For each section, students record in their 

journals the number of correct answers and the completion time. 

Daily Routine 

Upon entering the classroom each day, each student picks out a fluency warm-up activity to 

work on until one minute into class. Students record their work on the chosen activity in their 

journals. When class begins, the instructor leads a routine in which students share sticky points 

and breakthroughs. Sticky points are particular problems that proved to be challenging for a 

student, and the rest of the class is asked to think of possible ways to solve the problem. Often 

ideas are shared through a number talk routine (Humphreys & Parker, 2015). Breakthroughs are 

new ideas or ways of thinking about an area of fluency, and these are shared to encourage other 

students. Later in the course, students take turns leading these discussions, which allows them to 

practice generating, recording, and debriefing student responses. The fluency warm-up activities 

and subsequent discussion takes between two and ten minutes at the start of each class period. 

Students record in their journals new strategies they learned from these discussions. The 

following exercises are explained in the order they are introduced during the course.  

Build it! In this activity, students sort multiplication facts according to whether or not the 

fact is recalled automatically. For any fact that is not, the students work to build the fact from a 

related fact they do know. For example, when determining the product of 8×7 students might 

view the problem as 8(5 + 2), 7(5 + 3), or (7×4)2. 

30-second challenge. In the 30-second challenge books (Lock, 2010), students are given an 

initial number and then asked to perform a series of operations on the number using mental math. 

The challenges are sorted into beginner, intermediate, and advanced puzzles. Some examples of 

sticky points in this activity include +
,
 of 600, 119 ÷ 7, and 75% of 300. 

24. Using a standard deck of cards, students flip over four cards and try to be the first to 

make the cards equal 24 by using every card exactly once with some combination of operations. 

All face cards are worth 10, and aces are worth either 1 or 11. Students must also write their 

solution as one expression to win a point. For example, students might flip over 4, 8, K, and Q. 

One possible solution would be { 8 − 4 10 ÷ 10 !}. 

Fraction wall. Each partner begins with an empty fraction wall as shown in Figure 1, and 

takes a turn rolling a numerator die (1, 1, 2, 2, 3, 4) and denominator die (
5

, 
+

, 
6

, 
7

,
8

 , 
95

). 
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After the roll, the student is tasked with shading an amount on the wall equivalent to the result of 

the roll. The student may shade any area equivalent to the rolled amount, but has to shade the 

entire area to be able to complete the turn.  

 
Figure 1. Fraction wall 

Fraction war. A stack of fraction cards is split between two partners and held face down. 

Each partner flips over a fraction to compare, and the person with the larger fraction wins both 

cards. To win the cards, the student must explain how she knows her fraction is larger. As a 

variation, students take turns determining which fraction is closer to 0, 1, or ½. Later in the 

course, these cards become fraction estimation cards. In this case, two fraction cards are flipped 

over, and students determine whether the sum (or the quotient) will be more or less than one. 

Estimation station. This warm-up game has two stacks of cards: the first features whole 

numbers, fractions, decimals, and percentages, and the second features an operation 

(𝑜𝑓,+,−,×,÷) followed by a number. In pairs, students turn over one card from each stack. Each 

partner is then given an agreed upon amount of time (e.g., 15 or 30 seconds) to lock in an 

estimate. After each student has locked in an estimate, the students may find the exact answer 

using a calculator to determine which estimate was closest. At this time the students also 

compare how they estimated. Some of the problems produced by this activity include 99
7

 of 2845, 

14.6 + 3 5
,
, and ?

95
÷ 0.16. 

Research Methodology 

To understand how students grow with procedural fluency in the areas of addition and 

multiplication facts with integers 0–10, fraction to decimal conversions, and estimation of 

addition, subtraction, multiplication, and division problems involving whole numbers, decimals, 

fractions, and percentages, data from 25 preservice elementary students’ fluency journals was 

collected in the spring 2017 semester. The data includes students’ self-reported time and 

accuracy for each of the four categories of the Mathematical Fluency Indicator, taken during the 

first and last weeks of the semester. Additionally, the data includes the first and last entries in the 

journal in which students reflected on their experiences taking the Mathematical Fluency 
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Indicator. Similar data collection is occurring in two sections of the course during the fall 2017 

semester; analysis of that data will be reported at the 2018 RCML Annual Conference. 

Findings 

Mathematical Fluency Indicator 

A paired-samples t-test was conducted to compare student time and accuracy on each of the 

four Mathematical Fluency Indicator categories taken at the beginning and end of the semester 

(see Table 1 and 2). This data shows statistically significant improvement in both accuracy and 

speed in all four categories.  

Table 1 
       Pre- and Post-Comparison of Proportion Correct on the Mathematical Fluency 

Indicator 

   
Paired Differences 

   
 

Pre Post Mean  Std. Dev. t df Sig. (1-tail) 
Addition 0.988 0.997 -0.008 0.024 -1.735 23 0.0480 
Multiplication 0.939 0.974 -0.035 0.056 -3.102 23 0.0025 
Fraction-
Decimal 0.711 0.918 -0.207 0.222 -4.378 21 0.0001 
Estimation 0.682 0.852 -0.170 0.161 -5.077 22 0.0000 

 
Table 2 

       Pre- and Post-Comparison of Time in Seconds on the Mathematical Fluency Indicator 

   
Paired Differences 

   
 

Pre Post Mean  Std. Dev. t df Sig. (1-tail) 
Addition 100.167 76.583 23.583 21.472 5.381 23 0.0000 
Multiplication 158.667 98.667 60.000 50.53 5.817 23 0.0000 
Fraction-
Decimal 337.714 145.095 192.619 141.997 6.216 20 0.0000 
Estimation 433.478 294.565 138.913 107.651 6.189 22 0.0000 

 
Beginning of the Semester Journal Entry Themes 

Many of the students struggled with the indicator at the beginning of the semester. This was 

most pronounced in the areas of fraction to decimal conversions and estimation.  

Lost skills. A majority of the students expressed surprise for how much they struggled and 

attributed this struggle to forgetting mathematics they once knew. Many students cited the 

amount of time that had elapsed since they first learned these ideas. One student explained, 

“Taking the math fluency indicator was interesting because I have not done this kind of math for 

quite a while, so I am pretty rusty.” Interestingly, some students did not even remember learning 
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these topics in school. Some students pointed to calculator use as a reason they had forgotten 

how to do this mathematics.  

Not good at this. Many students wrote about how this indicator confirmed the areas of 

chronic mathematics struggle. These areas were estimation, fractions, and “times tables.” The 

students used phrases like “I’m terrible at…” “I’ve always had a hard time with…” and “I’m bad 

at….” One student concluded, “I’m not very good with fluency.” 

Anxiety. Many of the students wrote about how the indicator triggered their long-standing 

mathematics and testing anxieties. One student wrote, “Taking these fluency indicators really 

freaked me out. I haven’t felt this dumb in a very long time.” Many of the students also 

communicated being afraid of not being able to gain fluency during the course because of past 

failures in mathematics. Several students pointed to the timed aspect of the test as a reason they 

were freaked out and did not do well on the assessment.  

End of the Semester Journal Entry Themes 

All of the students performed better on the indicator at the end of the semester. 

Growth surprise. The most common theme in the last entries was student surprise at how 

they grew with fluency. Many of the students reflected on the way they used to do mathematics 

in “the longest and most arduous ways of solving” and marveled at how their present thinking 

differed. Students who at the beginning of the semester thought they were just “rusty” with 

mathematical fluency admitted that they had never truly possessed mathematical fluency before, 

and only now understood what true fluency meant. Just as Seaman and Szydlik (2007) 

established, these students confirmed that they had previously seen mathematics as a set of rules 

and procedures you use to find an arbitrary correct answer. One student explained that the class 

warm up exercises and thinking strategies “have rewired the way I think.” Another student 

rejoiced at her new found tool of estimation because she “no longer goes into a problem, blindly, 

wondering what the answer will be.” Another student explained that at the beginning of the 

course her “go to tool was a calculator, not my brain,” by the end of the course she did “real life 

math” without a calculator. One student explained, “I can now build from the things I know 

when I forget other things.” The students frequently used words such as understanding, active 

thinking, reasoning, and common sense to explain how their approach to mathematics differed 

by the end of the course; “This class has raked my brain over hot coals, but here at the end, I now 

feel I have a true understanding of basic math.” 
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Growth mindset shifts. While many of the beginning journal entries bemoaned innate 

struggles with mathematics, so many of the final entries attributed newly gained fluency to hard 

work and effort. This was a common sentiment by the end of the course, “Some things are still 

challenging, but I know that I can get it if I keep working at it.” One student explained how she 

used to see mental math as something used only by very smart people, but by the end of the 

course she could “fully depend on myself and my own knowledge to solve problems.” Another 

student even said he “really looked forward to finding problems that would stump me” because 

these presented an opportunity to gain a new way of thinking. 

All aspects of the course. The students pointed to many reasons for their increase in fluency, 

including parts of the fluency routine (e.g., warm-up exercises and sticky point discussions), 

lessons about developing thinking strategies, understanding standard algorithms, using 

manipulatives, progressing through the concreteàpictorialàabstract sequence, and exploring 

multiple solution strategies. This connects to mathematics education literature about how 

procedural fluency, conceptual understanding, multiple representations, and mathematical 

discourse are interrelated (Ball et al., 2005; NCTM, 2014; NRC, 2001).  

Further Study and Implication 

The fluency routine created in this mathematics for elementary teacher course and described 

here connects to the recommendation by Seaman and Szydlik (2007) that preservice teachers be 

immersed in the culture of mathematical thinking in order to gain necessary proficiency.  In fact, 

one student wrote in her last journal entry, “This is really cool to see my progression and how 

much better of a mathematician I’ve become.”  This routine led to improvement in both accuracy 

and speed in the areas of addition, multiplication, fraction to decimal conversions, and 

estimation.  Furthermore, the students gained fluency with addition, subtraction, multiplication, 

and division of whole numbers, fractions, decimals, and percentages as shown on the course 

fluency exam. 

Some changes were made to the fluency routine after this initial data collection. The 

Estimation Station was developed to help students grow more with estimation. Also, the 

instructors spent more time explaining that while the Mathematical Fluency Indicator does 

measure both accuracy and time, time is only included to establish a baseline of completion time 

for each individual. This baseline helps the instructors and the students see fluency growth 

throughout the semester. As this fluency routine continues to be researched and refined, the 
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instructors hope to provide a model for use in other content courses for preservice elementary 

teachers. The researchers look forward to presenting their analyses of subsequent data at the 

2018 RCML conference. 
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This qualitative study investigated preservice elementary school teachers' conceptions about the 
density of the set of decimals and the set of fractions. Thirty-six participants were asked to find a 
decimal or fraction between two given decimals or fractions and to share their reasoning(s) 
while answering the four purposefully chosen questions. On average, each question was 
answered correctly by 67% of the participants. The data suggest that the ability or ease with 
which participants identify a decimal or fraction between two given decimals or fractions 
depends on the nature of the numbers. Implications for teaching and assessments are discussed. 
 

Introduction 

Teacher Knowledge and Rationale of Study  

According to Ball, Hill, and Bass (2005), the quality of mathematics teaching depends on 

teachers’ content knowledge. This is knowledge that can be categorized as being either (a) 

subject matter (b) pedagogical or (c) curricular knowledge (Shulman, 1986). Shulman points out 

that strong subject matter content knowledge allows the teacher to go beyond understanding that 

something is so by understanding why it is so. Researchers (e.g., Ma, 1999; Schoenfeld & 

Kilpatrick, 2008) have argued that effective instruction, which can in part be demonstrated by 

teachers providing sound explanations of mathematical concepts, requires teachers to thoroughly 

understand the content they teach. “To assume that the content of first-grade mathematics is 

something any adult understands is to doom school mathematics to a continuation of the dull, 

rule-based curriculum that is so widely criticized” (Ball, 1988, p. 23). Post, Harel, Behr, and 

Lesh (1988) examined middle school teachers’ understanding of rational number concepts and 

observed that only a few of the teachers who solved the problems correctly were able to give 

satisfactory explanations of their solutions. The researchers also found out that some of the 

misunderstandings found in students were also present in teachers. 

Studies on inservice and preservice teachers’ content knowledge abound, an indication of 

researchers’ view on the importance of teachers’ content knowledge. Among the topics 

investigated through multitudes of studies, are teachers’ conceptions about and operations with 

rational numbers and place value. The current study is concerned with preservice teachers’ 

understandings of density and ordering of fractions and decimals. We embarked on this study 
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with a view that in addition to being able to solve problems, teachers should be able reason 

mathematically, a view shared by other researchers (e.g., Rathouz, 2009) and that preparing 

teachers to teach classrooms where children learn to justify their thinking requires that teachers 

be exposed to an environment where they inquire, communicate, collaborate and reason 

(Rathouz). Another motivation for carrying-out this study is that even though according to 

Kastberg and Morton (2014) very few articles focusing on preservice teachers’ knowledge of 

decimals were published since the late 1990’s, a common finding in those few studies is the 

importance of place value in understanding and applying decimals. Investigating conceptions 

about density and ordering of fractions and decimals in this study was structured so as to 

understand both the ability to solve the problems and offer plausible explanations. 

Literature Review 

Erroneous rules applied by students when trying to decide which of two decimals is larger 

can be classified as longer-is-large or shorter-is-larger. In some cases a zero in the tenths place 

elicits a response suggesting students think that if a number has a zero in the tenths places, then it 

is always smaller (Nesher & Peled, 1986; Resnick et al., 1989; Sackur-Grisvald & Leonard, 

1985).  

In a study involving preservice teachers, more than half of the participants failed to arrange 

0.606, 0.0666, 0.6, 0.66 and 0.060 in increasing order (Putt, 1995). In about three-quarters of the 

incorrect responses, 0.6 was selected as the largest, an indication of the existence of the shorter-

is-larger misconception, an indication of an early understanding of place value that says as one 

moves to the right of the decimal point there is a decrease in positional value (Kastberg & 

Morton, 2014). A study by Stacey et al. (2001) revealed difficulties comparing decimals with the 

number zero and some participants who exhibited the shorter-is-longer misconception. Widjaja, 

Stacey and Steinle (2008) asked preservice teachers to figure out how many decimals are 

between 2.18 and 2.19 and between 0.899 and 0.90. About half of the 140 participants and about 

one-fourth did not successfully answer the questions on the pretest and respectively, an 

indication of difficulties with the idea of density of decimals. 

Post, Harel, Behr, and Lesh, (1988) investigated elementary school teachers’ ability to order 

fractions and decimals. On average, participants from one site correctly answered 65.3% and 

54.2% of the items in each category. The item with the highest level of success (76%) was 

writing a fraction between 7/8 and 1 while the item with the lowest success rate (50%) was 
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ordering the fractions 5/8, 3/10, 3/5, 1/4, 2/3, 1/2 from least to greatest. Only 58.7% of the 

participants were able correctly order .3, .3157, .32, .316 from smallest to largest while 49.7% 

correctly wrote a decimal between 3.1 and 3.11. Among the researchers concerns, were teachers 

not knowing enough mathematics as evidenced by the failure of a lot of them to answer 

questions involving fractions and decimals and the inability to explain solutions in pedagogically 

acceptable ways by a majority of those who correctly solved problems. 

This study investigated the ability to find a decimal (fraction) between two given decimals 

(fractions) and reasoning provided by preservice teachers in answering the questions. Unlike 

other studies (e.g. Widjaja, Stacey & Steinle, 2008)), participants did not have to choose from a 

list to explain their reasoning. Open responses were allowed therefore giving the possibility of 

getting a wider range of reasoning being applied in solving the problems. 

Methodology 

Data Sources 

The data used for this study was collected from thirty-six (36) participants who were 

elementary teacher education students enrolled for the first part of a two-series mathematics 

content course at our university. Prior to enrolling in the class, every participant had taken at the 

minimum a College Algebra course.  

A total of four questions were used for data collection purposes. Two of the questions were 

administered as part of a test that the participants took during the semester while the other two 

similar questions were embedded within the final exam for the course. The four question items, 

which are listed below, were specifically selected in order to detect preservice teachers’ 

conceptions, errors and/or misconceptions about the questions of (a) identifying a decimal lying 

between two given decimals and (b) identifying a fraction lying between two fractions. 

Questions  

1) Name a decimal between 0.77777 and 0.77778. If it is not possible, explain why not. 

2) Name a fraction between ¼ and ½ that has denominator 15. 

3) Give a decimal between 4.768 and 4.769. If it is not possible, explain why not. 

4) Name a fraction between	"
#
	and	$

#
.	If it is not possible, explain why not. 

Procedure 

Questions 1 and 2 were included on a test while Questions 3 and 4 were among the questions 

on the final exam for the course. The researcher examined and coded participants’ responses to 
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each question, noting if each response was correct (1) or not (0). In addition, data on the 

procedure used to answer each question or explanation provided by each respondent were 

collected. The data were stored in a spreadsheet for analysis. Constant comparison method 

(Lincoln & Guba, 1985) was used to create categories of the explanations participants used 

justify their responses. 

Results and Discussion 

Table 1 shows how many of the thirty-six (36) participants correctly answered each question. 

Also shown in the table are the percentages of participants who correctly answered each 

problem. 

Table 1 

Percent Correct on om test 

Question as it appeared om test 
% correct 

(𝑛 = 36) 

 

Question 1: Name a decimal between 0.77777 and 

0.77778. If it is not possible, explain why not. 

58.33% (21) 

Question 2: Name a fraction between ¼ and ½ that 

has denominator 15. 
94.33% (34) 

Question 3: Give a decimal between 4.768 and 

4.769. If it is not possible, explain why not. 
63.89% (23) 

Question 4: Name a fraction between	"
#
	and	$

#
.	If it 

is not possible, explain why not. 
69.44% (25) 
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Of the fifteen students who did not successfully address Question 1, only one did not 

provide a response while fourteen (14) said that it was not possible to have a fraction between 

0.77777 and 0.77778. Figure 1 shows a response supplied by one of the participants, response 

that indicates the participant views 0.77777 and 0.77778 as being consecutive. 

 
 

Figure 1.  Erroneous argument on why there is no decimal between 0.77777 and 0.77778. 

 
Another response in which the participant says there is no decimal between 0.77777 and 

0.77778 is shown in Figure 2. Their argument seems to be that if you start with 0.77777, then the 

numbers to the immediate left and right of 0.77777 are 0.7776 and 0.77778 respectively. 

 
 

Figure 2. Faulty argument suggesting the real numbers 0.77777 and 0.77778 are consecutive. 

 
Below are some additional explanations provided, verbatim in trying to justify that there is 

no decimal between 0.7777 and 0.77778.  

Not possible because there is no number following 7 in the last place other than an 8. (2) 

There isn’t any because the numbers are way too close together. (3) It’s only the very last 

number that changes. (4) There is no decimal between because they come right after each 

other. (5) This is not possible because there no number between 7 and 8 meaning no number 

to place between the two numbers. (6) It is not possible because the two decimals are 

consecutive and hold same place value. (7) I don’t think that is possible. 0.77777 has five 

places and 0.77778 is also. You can’t put a decimal to make 0.77777.5 because it’s already a 

decimal 
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The explanations provided in an attempt to justify why there is no decimal number between 

0.77777 and 0.77778 seem to suggest that conceptions about natural numbers or integers were 

coming into play. Specifically, the participants seem to erroneously apply the fact that given two 

consecutive integers or natural numbers there is no other integer/natural number between them. 

The discrete nature of natural numbers often leads to a cognitive conflict with the compactness 

of rational numbers and the continuum of real numbers (Merenluoto, 2003). 

Question 2 had the most success with about 94% of the participants giving the correct 

response. The two respondents who did not correctly answer this question provided fractions 

greater than ½. Of the thirteen students that did not successfully answer Question 3, seven said it 

was not possible to have a decimal between 4.768 and 4.769, four did not provide any response, 

one attempted and gave the wrong answer and one did not provide a numerical response but 

simply said it was possible. Figure 3 shows some of the responses in which participants argued 

that 4.768 and 4.769 are consecutive therefore there is no decimal between them. 

 

 
 

Figure 3. Two incorrect arguments suggesting 4.678 and 4.769 are consecutive real numbers. 

  
Eleven respondents failed to correctly answer Question 4. Three students provided incorrect 

numerical responses, four provided no response, while four reasoned that it was not possible to 

name a fraction between 1/7 and 2/7. Although not widespread in answering Question 4, Figure 4 

shows work of a participant who converted 1/7 and 2/7 to 2/14 and 4/14 respectively. Although 

they wrote down the fraction 3/14, their conclusion was that it is not possible to name a fraction 

between 1/7 and 2/7 since the two fractions have the same denominator, which seems to suggest 

(as seen earlier) that they are looking at the numerators of the given fraction (which are 

consecutive) to reach a conclusion. 
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Figure 4. Faulty reasoning on why there is no fraction between 1/7 and 2/7.  

 
The success rates in providing decimals between the decimals in Questions 1 and 3 are very 

close. When one looks at the percent of students who successfully provided a fraction between 

1/4 and 1/2 and between 1/7 and 2/7 respectively, participants had less success in Question 4. 

The explanations provided suggested that because 1/7 and 2/7 have the same denominator and 

the numerators 1 and 2 are consecutive natural numbers, then there cannot be a fraction between 

1/7 and 2/7.  

We conclude this article by saying that the data analysis seems to suggest that some 

preservice teachers carry over conceptions about integers and natural numbers and erroneously 

apply them to problems involving rational numbers. What we can also infer from the results is 

that examples in the classroom and assessments on density of rational numbers should be varied 

in order to expose and let future teachers explore and reason with number concepts. Cramer and 

Lesh (1988) revealed that about a fifth of the participants did not understand rational number 

concepts well enough to meaningfully teach them. We echo the same sentiments as they did, that 

instruction should strive to make sure future teachers have the conceptual understanding of 

concepts they are expected to teach. 
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In the summer of 2017, sixteen students from an urban school district participated in a three-
week summer course as part of a curriculum research and development project. The purpose of 
this project was to develop and implement lessons with incoming third-grade students focused on 
place value concepts presented within different number systems developed through generalized 
quantitative contexts (using mass, area, length, and volume). Lessons were designed, 
implemented, and retrospectively analyzed using design research methods to examine and 
further develop the curriculum. This qualitative study reports initial findings about the 
mathematics with which the students engaged that informed development of the curriculum. 
 

Theoretical Framework and Related Literature 

Place value concepts play a fundamental role in students’ understanding of number sense, 

operations, algebraic reasoning, and beyond. Typically, concepts in place value are rooted in 

ideas of counting and cardinality in the decimal number system. Consequently, prior studies on 

the development of number skills have focused on students working solely in base ten and using 

discrete models. In addition to number naming strategies, other indicators of place-value 

understanding have focused on the application of strategic counting skills (i.e., Chan & Tang, 

2014; Ho & Cheng, 1997) and the ability to compare magnitude differences between number 

pairs (Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011). In contrast, this study is based on the 

premise that experiences with continuous quantities serve as a natural starting point for 

mathematics learning because it mediates learning of concepts that are primary and basic in the 

structure of mathematics and students’ ways of making sense of the world (Davydov, 1975a, 

1975b, as cited in Venenciano & Dougherty, 2014). Research into student thinking within such 

an approach suggests that they develop insight into place value concepts and the magnitude of 

numbers through a generalized measurement context. In Slovin and Dougherty's (2004) study of 

second grade students who were learning to represent counting numbers in different number 

systems, they found that while some students were operating procedurally and specifically, there 

was evidence that others were operating conceptually in their reasoning about how a place value 

system worked. In another study, written responses from 30 students on two problems from an 

assessment given from 2002–2008 highlight how students showed their understanding of place-

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 105



 

 

value from a generalized quantitative approach. Responses to the first problem showed their 

ability to create supplemental units within a base, and responses to the second problem revealed 

students’ insights into number systems (Venenciano, Slovin, & Zenigami, 2015). These studies 

highlight how working with place value concepts within a generalized quantitative context 

focuses student attention on the structure of number systems, a foundational construct of place 

value. 

Our study builds upon this earlier work and examines how students with basic experiences 

working with continuous quantities (e.g., mass, volume, length, area) grapple with measurement 

tasks designed to promote their understanding of place value concepts. In particular, we focus on 

this question: How can a quantitative approach involving continuous quantities support students’ 

learning of place value concepts? We hypothesized that working with different number systems 

in quantitative contexts provides students with opportunities to make generalizations about the 

structure of number systems and to develop an understanding of place value through a non-

discrete context. 

Development of the Curriculum 

Thirteen lessons were developed based on an approach put forth by Davydov (1975a, 1975b) 

as a way for children to develop a robust understanding of place value. Using design research 

methods (Gravemeijer, 1994), the developed lessons were analyzed as they were enacted within 

the Hawai‘i Elementary Mathematics Laboratory (HEML), a three-week summer class for 

students entering third grade. HEML afforded researchers and curriculum developers the 

opportunity to implement learning experiences immediately following lesson design sessions. 

The implementation of the lessons provided opportunities to analyze their enactment in the 

classroom and to continue the curriculum development based on students’ mathematical thinking 

and experiences during the lessons. The curriculum development began with outlining a 

“possible learning route that aims at significant mathematical ideas and a specific means that 

might be used to support and organize learning along this route” – the beginnings of what 

Clements refers to as a “hypothetical learning trajectory.” (Clements, 2008, p. 595). The foci of 

lessons 1–6 included introducing the students to the class context and building the culture of the 

classroom community. Students were also introduced to working and measuring with the 
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different continuous quantities (mass, volume, area, and length). In lessons 7–13, place value 

concepts were the main foci; these are highlighted in Table 1. 

Table 1 

2017 Project Hypothetical Learning Trajectory Concepts 

 Mathematical Foci 
Lesson 7 ●  Exchanging units: A predetermined number of smaller units can equal a larger unit of 

a continuous quantity (area, length, volume or mass).  
Lesson 8 ●  Introduction to multi-digit numbers and place value in base five. 

●  Given a main measure, supplemental measures can be made using volume for this 
base. These measures can be used to make a quantity. 

Lesson 9 ●  Introduction to multi-digit numbers and place value in base three. 
●  Given a main measure, supplemental measures can be made using volume for this 

base. These measures can be used to make a quantity. 
Lesson 10 ●  Given a main measure, supplemental measures can be made for any base. These 

measures can be used to make a quantity. 
Lesson 11 ●  Other base number systems: A base number system can be determined by finding the 

relationship between the main and supplemental measures. 
●  Counting or measuring in smaller base number systems establishes a structure for 

subsequent work in base ten. 
Lesson 12 ●  Introduction to base ten: Supplemental measures for base ten are introduced. 
Lesson 13 ●  Continued work in base ten 

 
Immediately after the enactment of each lesson, the teacher and observers met to discuss and 

review students’ work from the lesson. The meetings focused on retrospectively analyzing 

students’ mathematical thinking and experiences as well as on refining subsequent lessons. 

Retrospective analysis involves situating the design experiment within a “broader theoretical 

context” that results in “accounts of learning that relate learning to the means by which it can be 

supported and organized” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p. 13). In the 

curriculum development team’s discussions, students’ thinking and experiences were discussed 

within the framework of Davydov’s approach. The next lesson was then adjusted and refined. 

Methodology 

The three-week summer program took place in June 2017 with a diverse group of 16 students 

from four public elementary schools located in an urban area with a high-needs population.i The 

research team consisted of a teacher-researcher with 17 years of elementary school teaching 

experience but new to teaching from an approach using continuous quantities, two curriculum 

researchers who were involved in developing the original lessons from which the summer 

materials were adapted, and a researcher with expertise in practice-based research involving 
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multimedia records of practice. The team worked with principals and curriculum coordinators 

from the schools to identify students for the program. In order to encourage participation, tuition 

was waived and school supplies for the class were provided. The district in which these schools 

reside utilizes a state-mandated curriculum aligned to the Common Core State Standards that is 

based on a counting-first approach to learning place value concepts within the decimal number 

system.  

The research team collected records of practice from each lesson comprising a video 

recording of the lesson, still photos, digital scans of the written work produced by students 

during the lesson, and the lesson plan and materials prepared by the teacher. Researchers also 

conducted pre- and post-interviews and a drawing task with the students. The team reviewed the 

video, identifying the activity segments that comprised each lesson. Segments focused on 

students’ thinking about place value were selected, transcribed, and analyzed for evidence of 

their evolving understanding of place value concepts, their ability to work with and use different 

number systems, as well as their capacity for reasoning, explanation, and justification. This 

qualitative study reports on the results of this analysis of lesson video recordings – particularly of 

students’ experiences with place value concepts in whole class discussions where they explained 

their solutions and thinking about place value. 

Findings 

Making Exchanges (Lessons 6–8) 

A foundational concept to place value and arithmetic introduced in Lessons 6 and 7 involves 

the notion that iteration of a unit can make a larger unit. In Lesson 8, students used a continuous 

quantity of area, iterating a small unit to create an area which could then be represented as a new 

larger unit to reinforce this idea. 

 
The table in Fig. 1 shows area-unit K is used four times to make area-unit B. Area L is made with 
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five area-units K and one area-unit B. Students were provided with four area-units B (2 in. x 2 in. 

squares) and six area-units K (1 in. x 1 in. squares) to construct an area L. Table 2 includes 

examples of area L made by two different students. Student 1 created area L with five area-unit 

Ks and one area-unit B, which is accurate by the information provided, but did not account for 

the notation indicating four area-units K make an area-unit B. Student 2 created an area in which 

four area-units K were exchanged for one area-unit B. In his explanation, he placed four area-

units K on an area-unit B, to support his understanding of the equivalent relationship (4K = B), 

but he described the action as taking away and adding back. The teacher provided the language 

of “exchange” to more accurately describe the mathematics of his action. It was during this 

interaction that the concept of exchanging units became explicit for the class. 

Table 2  

Student Responses to Exchanging Units Task (Lesson 8) 

Example Transcript 

 

Student 1: So our area L is four pieces, combined with one 
more. Which is five Ks, and this is how area L 
looks like. 

 

 
 

Student 2: I put two Bs because, um, I had five Ks and to 
make a B you need four, so, I used the four Ks to 
make one B and there was one left so I put it as a 
K. And that's it. 

T:  It might help if you show us how you started. So, here's 
the area unit Ks. Can you show us, how you 
started?  

St. 2: There's one and the other four is in here (points to area 
B) so got five, I took apart from four, and um, I 
made another B, and there's one left, I put back 
the K. 

T: So, you're saying you took four of the Ks and put it 
together into a B. And there was one more, and 
that's that extra K.  

St. 2: There was five Ks (places four area-units K on area B), 
but I took away four and added 

T:  Okay, wait, where's the five area-units K? 
St. 2: These four and this one. And then I took this thing away 
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(takes away the four area-units K) then I added 
another B then I put this (places one K in the 
area) 

T: So you did an exchange. 
St. 2: Yes. 

Supplemental Measures (Lessons 8-11) 

Students were introduced to place value through smaller base number systems to help them 

understand the structure of place value of multi-digit numbers throughout Lessons 8–11. Base 

five was introduced through a story context involving aliens from an imaginary planet, Quinar, 

who only had the symbols 0, 1, 2, 3, and 4. Students pretended to be from Quinar and were asked 

to determine length A (19 length-units E). While counting length-units, they realized there is a 

problem at length 5E since no symbol “5” exists on Quinar; the supplemental unit EII was 

introduced to replace 5E which set the foundation for multi-digit representations. Working with 

smaller bases helps students see the need to exchange to the next place value and generalize 

place value concepts through measuring large quantities. They see that, depending on the base 

system, they must create a supplemental unit in order to numerically represent the quantity. For 

Lessons 8–11, students were introduced to different number systems and various measuring tasks 

which required them to work within those number systems by creating supplemental units and 

either measuring or creating a given continuous quantity such as an area or length.  

As an example, students were tasked to use supplemental units in a given number system to 

measure a quantity of area. One pair of students working in base five combined their main unit 

and supplemental unit, iterating them together four times, to measure the area, resulting in four 
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main units and four supplemental units, or spoken “four-four base five” (44five). Another student 

used 24 base six main units to measure the area and arrived at “twenty-four” in base six, and 

overlooked the fact that counting in base six would produce a different result than counting in 

base ten. Introducing and working with supplemental measures in different number systems 

provided a conceptual foundation for working with place value in base ten. 

Supplemental Measures in Base Ten (Lessons 12–13) 

During the last two days of instruction, attention turned to base ten. The tasks in Lesson 12 

involved creating supplemental units in base ten. Students worked with area to make an EII 

supplemental unit in base ten, then predicted how an EIII unit might be created in base ten. While 

most students were successful making EII, several thought 3EII would make EIII. However, one 

student connected her prior experience with other bases and described, "We used 10 of the Es to 

make EII, and we usually use the same number of EII to make EIII," to which most of the class then 

agreed. 

 On the final day, students reviewed the base ten supplemental units, including making a class 

supplemental EIV base ten area unit. One student observed, “So whatever base it’s on, that’s how 

much of the Es you’re gonna need to make the EII. So if it was on base three, you would use three 

bases to make an EII and you would use three bases to make EIII.” While her vocabulary may not 

yet be accurate, she appears to be thinking in a generalized way about the relationship of places 

in multi-digit numbers of any base.  

Discussion and Implications 

The students we worked with had no prior experience with the lessons and tasks from this 

curriculum, and, as we expected, were relatively new to measuring with continuous quantities as 

a means for learning place value concepts. As such, students encountered a number of challenges 

over the course, which had curricular and instructional implications for the lesson designs. One 

challenge involved students’ unfamiliarity with length, area, mass, and volume. A few students 

struggled with recognizing that they could measure an amount by iterating a unit, and they did 

not always see the importance of precision in measuring. In addition, working in different 

number systems within a brief amount of time was challenging – as well as making the quick 

transition to base ten. It is possible that more explicit instruction focused on the digits that are 
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used within a base and on mathematical vocabulary is needed to support student learning.  

Working with place value through measuring continuous quantities within different number 

systems places the mathematical focus on generalized concepts, a notion foundational to the 

approach put forth by Davydov (1975a, 1975b) and his colleagues. Over the three-week period 

with this class, students began to attend to the structure inherent to number systems, with two 

children making generalizations based on their experiences with measuring continuous 

quantities. The results from this project provide us with information for furthering our 

curriculum development efforts based on this approach for learning mathematics.  

                                                
i In the 2016-2017 school year, eight elementary schools (K-5) in the state had a lower percentage of 
“math proficient” students than the state average. Five of these schools were in this urban area. 
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Our research in the acquisition of proportional reasoning showed that task difficulty and 
strategy use is predictable, given the classification of a task’s number structure. In this work, we 
translate our research to practice, that is, we describe how teachers can use our findings. We 
first describe mathematical knowledge for teaching as it pertains to the topic of ratio and 
proportion and then categorize number structure characteristics that affect student thinking. 
Teachers can use our categorization and findings to enact the teaching practice, “elicit and use 
evidence of student thinking” (NCTM, 2014, p. 10) to assess progress and adjust instruction. 

 

Beyond investigating fascinating questions into how people think, we want our mathematics 

education research to positively impact learners. The mathematical knowledge for teaching 

model (Ball, Thames, & Phelps, 2008) indicates that teachers need knowledge concerning the 

mathematics of a topic, the tasks that engage students with the mathematics, and typical student 

responses (their strategies and their thinking). We examine these three types of knowledge to 

translate our research in the acquisition of proportional reasoning in students to knowledge that 

informs practice for teachers. More specifically, we ask, “What do teachers need to know to use 

missing value proportion problems to develop proportional reasoning in their students?”  

Related Literature 

We begin by reviewing background material on the mathematics of proportion, the missing 

value task, and the variety of student-generated strategies. 

Proportional reasoning is addressed in middle school, but its foundation is laid much earlier. 

Students grapple with proportionality when making sense of the base 10 number system and they 

use multiplicative comparisons in rational number contexts. A proportion is the equality of two 

ratios, denoted mathematically as A/B = C/D. Essential Understandings of Ratio and Proportion 

(Lobato & Ellis, 2010) identifies the key aspects of the underlying mathematics. The anchoring 

sentence is this: “When two quantities are related proportionally, the ratio of one quantity to the 

other is invariant as the numerical values of both quantities change by the same factor” (p. 11). 

The mathematical goal is to make sense of two types of ratios and the multiplicative structure of 

the proportion. We will unpack this goal further when we discuss evidence of understanding 

wthat student work provides. 
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To make sense of the two types of ratio, we must first distinguish them. Contextual problems, 

rather than purely numeric ones, make this task straightforward. To name the ratios, consider the 

example in which A boxes of treats are needed for every B people. The ratio A: B is between two 

types of quantities, boxes and people, and so is called a between measure spaces ratio. The other 

ratio is a ratio of two quantities of the same type, as when comparing the original number of 

boxes (or people) to a scaled number of boxes (or people). This ratio is called the within measure 

space ratio. Scale factor is a common term for the numerical value of this ratio. The between 

measure spaces ratio, numerically, is the constant of proportionality or the invariant of the 

proportion. This number is the functional relationship between the quantities (that is, the k in y = 

kx) and appears as the slope in a graph of the relationship. Unit rate is a related idea. Other terms 

exist for the between and within measure space ratios; we prefer these terms as they can be 

distinguished using the units of the quantities. This vocabulary is for researchers and teachers, 

not students. Students articulate the ratio by referring to the kind of quantities they compare.  

Our work uses missing value proportion problems to engage students in proportional 

reasoning. This type of problem is one in which three quantities are given and the goal is to find 

the fourth so that a proportion is formed. An example is: If 4 boxes of treats are needed for every 

12 people, how many boxes are needed for 42 people? This type of task is ubiquitous in 

textbooks, in every day mathematics, and in mathematics research. These tasks are structurally 

simple, hence easy to create. Researchers, however, know that many of their features, such as 

context, semantic type, and choice of numbers, affect student responses. Number features are 

very influential. Teachers need a practical way to identify suitable tasks for their students.  

We designed our research to study student success rates and solution strategies on missing 

value tasks with various number features. See (Riehl & Steinthorsdottir, 2017) for investigation 

methods and findings. We classify problems by characterizing each ratio as an integer or non-

integer ratio. In the example task, the between measure spaces ratio is 4: 12. This is an integer 

(I) ratio since the larger number is a whole number multiple of the smaller. The within measure 

space ratio is 12: 42, which is a non-integer (N) ratio. The target situation (X boxes: 42 people) 

is an enlargement of the original, so the task is an “IN enlarge” problem. In denoting the 

classification, the between measure spaces ratio is always given first. An “IN shrink” task is: If 

14 boxes of treats are needed for every 42 people, how many boxes are needed for 12 people? 
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Table 1 displays the eight possible number structures using the characterizations of the two ratios 

and the direction of change, along with an example proportion for each classification cell.  

Table 1 

Number structure characteristics 

 
Within measure space ratio 

Integer Non-integer 

Between measure 

spaces ratio 

Integer 

Cell A: II 

Enlarge or shrink 

4
12

=
20
60

 

Cell C: IN 

Enlarge or shrink 

4
12

=
14
42

 

Non-integer 

Cell B: NI 

Enlarge or shrink 

4
10

=
20
50

 

Cell D: NN 

Enlarge or shrink 

4
10

=
14
35

 

 

Students learn mathematics by grappling with appropriate tasks and they reveal their 

understanding in the strategies they use. Teachers are encouraged to “elicit and use evidence of 

student thinking” as one of the eight Mathematics Teaching Practices (NCTM, 2014, p. 10). 

Cognitively guided instruction developed this approach to assess students’ progress in learning 

basic operations (Carpenter, Fennema, Franke, Levi, & Empson, 2015). Students generate 

strategies based on what they know. Teachers guide students to correct erroneous reasoning and 

develop conceptual understanding before encouraging abstraction and use of algorithms. 

Similarly, teachers can assess and guide students’ progress in proportional reasoning by 

evaluating their work on missing value proportion tasks. Teachers need evidence that students 

understand the multiplicative structure of proportion (and so can use both ratios in solution 

strategies) and are able to articulate their reasoning and apply it in a variety of settings. By 

reasoning through thoughtfully chosen problems, students deepen their understanding of rational 

number as they explore transformations that maintain the invariant of the proportion. This study 

of a mathematical structure will be extremely beneficial as students continue to algebra and 

higher mathematics. The too-early introduction of an algorithm may undermine the learning 

process and lead to overgeneralization (Van Dooren, De Bock, Evers, & Verschaffel, 2009) and 

lack of understanding. 
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Student strategies may be erroneous or valid. Erroneous strategies include haphazard or 

incomplete calculations and absolute rather than relative comparisons. Valid student-generated 

strategies for missing value proportion problems include build-up and multiplicative strategies. 

Correct strategies may be rudimentary and inefficient or be sophisticated and efficient. See Riehl 

& Steinthorsdottir (2017) for examples. Partial understanding of a proportion, unfortunately, can 

give the impression of mastery. Students may comprehend only one of the two ratios, yet have a 

valid strategy for all problems. Teachers must look for evidence of understanding of both ratios 

to ensure students gain the desired depth of knowledge. In the next section, we unpack the 

mathematical goal and identify elements of student work that provide evidence of understanding. 

In the final section, we demonstrate how teachers can develop and extend students’ 

understanding of proportion by making intentional number choices in the missing value tasks 

they pose. 

Student Work as Evidence of Understanding 

Delineating components of the knowledge needed to understand ratio and proportion is likely 

impossible. Yet a continuum of understanding does exist and in order to assess progress, we need 

to identify significant points. A satisfactory outcome of understanding is recognizable: Students 

are able to identify when quantities are related proportionally and are able to flexibly choose 

whether to use the multiplicative relationship within or between the measure spaces to solve 

proportion related tasks.  

An initial step to reason proportionally is to form a composed unit. The student knows that 

the given quantities are linked and must be treated in some parallel fashion. Further, the student 

knows to use relative comparisons rather than absolute comparisons. Students with this level of 

understanding can implement a valid strategy. If students are not linking the quantities, they may 

perform haphazard calculation (adding the three quantities, say) or compare two quantities and 

ignore the third. If students use absolute comparisons, then they are trying to equate A: B and (A 

+ c): (B + c); this is sometimes called the additive error strategy. Consider the task: If 4 boxes of 

treats are needed for every 12 people, how many boxes are needed for 42 people? The additive 

error strategy yields the answer 34. 

Next, the student employs one of the two multiplicative relationships. The use of the within 

or between measure spaces ratio can take many forms. The numbers in the task, specifically 

whether the ratios are integer or non-integer, influence the students in their choice of strategy. 
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Students tend to be more successful when integer ratios are available. Table 2 compiles 

indicators and examples to the questions teachers ask to assess student understanding. Student 

work will take many forms and a solution is likely to include multiple indicators. 

Table 2 

Indicators of Understanding 

Query Indicators  Example using 4 boxes: 12 people 

Does the student 

recognize the quantities 

are related 

proportionally? 

The student forms a composed 

unit.  

 

The same operation performed on 

one quantity is performed on the 

other. 

The student uses relative 

comparisons. 

Does the student 

understand the 

multiplicative 

relationship of two 

quantities within the 

same measure space? 

The student creates equivalent 

ratios by iterating the composed 

unit.  

4
12

=
8
24

=
12
36

= ⋯ 

 

The student creates equivalent 

ratios by partitioning the 

composed unit.  

4
12

=
2
6
=
1
3
= ⋯ 

 

The student creates equivalent 

ratios by scaling the composed 

unit.  

4
12

=
4	 ∙ 𝑐
12	 ∙ 𝑐

 

 

Does the student 

understand the 

multiplicative 

relationship between 

the quantities in 

different measure 

spaces? 

The student creates a unit rate.  

 

1 box per 3 people  

1/3 box per 1 person  

The student creates equivalent 

ratios using the invariant.  
4
12

=
𝑏
3 ∙ 𝑏

=
1
3 𝑏
𝑏

 

 

 

Implications for Teaching 

Our project investigated both the success rate and strategy choices of over 400 middle school 

students on missing value proportion tasks in which we intentionally varied the number structure. 
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We found both the difficulty of the task and the types of strategies chosen by students are 

predictable, based the classification given in Table 1 (Riehl & Steinthorsdottir, 2017). In general, 

shrink problems are more difficult than comparable enlarge problems and the difficulty of tasks 

increases in order from Cell A (II) and B (NI) to Cells C (IN) and D (NN).  

An obvious implication for teaching is that the numbers in the task matter. A more helpful 

implication: Our framework of classifying missing value proportion problems (Table 1) allows 

teachers to organize their intuitive knowledge about the difficulty of missing value problems and 

relate difficulty to specific problem characteristics. A given task is simple to classify and for a 

problem stem, teachers can create additional tasks of predictable difficulty with minor 

adjustments to the numbers. Students need many experiences with proportional reasoning tasks 

and encountering the eight number structures ensures important variety. By making intentional 

choices of the numbers, teachers can use missing value proportion tasks to develop students’ 

understanding of the two multiplicative ratios in a proportion.  

Another finding of our research is the change in difficulty from cell to cell is not uniform. In 

particular, Cell C (IN) tasks are significantly more difficult than tasks from Cell B (NI) despite 

both cells containing tasks with exactly one integer ratio (Riehl & Steinthorsdottir, 2017). This 

suggests that students do not develop understanding of the two types of ratio in the same manner 

or at the same time.  

A rudimentary strategy is to iterate the given ratio and so to build up to the target. This 

focuses students’ attention on the within measure space ratio as they are comparing quantities 

sharing the same units. Because they have formed a composed unit, operations performed on one 

type of quantity are duplicated for the other type. This strategy works well when the scale factor 

is an integer (Cells A and B). In this case, students do not need to notice the relationship between 

quantities of different types. Eventually, students use multiplication rather than repeated addition 

and efficiently compute the target value. When the scale factor is a non-integer (Cells C and D), 

a student does not necessarily realize that the scale factor can still be computed and applied. 

Instead, students may scale by a whole number to get close to the target, and then figure out how 

to handle the “leftovers.” 

Knowledge that allows the students to partition (scale down) the unit is distinct from the 

knowledge that allows them to iterate it. This additional knowledge becomes a tool that allows 

students to solve shrink problems. It also provides a route to handle leftovers in build-up 
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strategies. Partitioning the unit is especially convenient when there is an integer relationship 

between the quantities (Cells A and C). In this case, a unit rate is evident. Students might not 

realize that the relationship between these two quantitates provides another route to the solution. 

Instead, students might scale the two quantities in the new ratio. Our research provides evidence 

that students often fail to notice and use the between measure spaces ratio and instead prefer to 

scale quantities, even when the numbers are inconvenient. The appearance of a unit rate will 

facilitate conversations regarding the relationship between the two types of quantities. This is an 

important step on the route to understanding proportions and teachers should create opportunities 

for students to explore the invariance of this factor. 

Here are brief examples illustrating that through intentional number choices, teachers can 

support and extend their students proportional reasoning. The context of the tasks is omitted, but 

should be created when given to students.  

• With beginning students, a learning goal might be to explore multiple ways to solve a 

missing value task. A Cell A task, such as 6: 18 = 30: X, is likely to generate a variety 

of strategies. Teachers will have the opportunity for rich discussions comparing and 

contrasting the strategies.  

• Suppose many students can successfully solve tasks by iterating the composed unit. 

The teacher has the learning goal for them to apply their knowledge of multiplication 

as repeated addition to make the build-up method more efficient. Try a task from 

either Cell A or Cell B with a large scale factor, such as 5: 4 = 200: X. This will 

encourage students to look for multiplicative relationships. 

• Suppose the teacher has the learning goal for students to partition the composed unit. 

A shrink task from Cell B, such as 42:14 = 6: X, or from Cell A, such as 24: 6 = X: 2, 

is appropriate.  

• If the learning goal is for students to notice and use the between measure space ratio, 

a Cell C task with messy scale factor and an appealing unit rate, such as 6: 18 = 22: 

X, will elicit multiple solution strategies. The teacher will be able to facilitate 

conversations drawing students’ attention to both multiplicative relationships.  

One of the goals of research in mathematics education is to improve student learning. To 

reach that goal, researchers must translate their academic findings to practice. Student learning 

improves when well-prepared teachers are in the classroom, and well-prepared teachers have 
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much mathematical knowledge for teaching. Increasing mathematical knowledge for teaching 

begins a virtuous cycle: When teachers dig into the mathematics of proportion, they can specify 

learning goals for their students. As they dig into the tasks that engage their students in 

proportional reasoning, teachers improve their understanding of how changes in a task’s features 

affect student thinking. As they gain experience in interpreting student work, their ability to 

assess students’ progress increases. With the knowledge of what their students understand and 

what they still need to learn, teachers can create sharper learning goals and choose appropriate 

tasks. The cycle continues.  

Our research examined how student success rate and strategy use varied as the number 

structure (Table 1) of missing value proportion tasks changed. Our aim now is to help teachers 

use the number structure of proportion as they pose tasks and interpret student thinking. 
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Despite the significant amount of research on inquiry-based methods (e.g., problem-based, 
project-based learning), there is only a scarce amount of research on them in secondary 
education. The purpose of this study was to examine the perceptions of secondary school 
mathematics teachers on their facilitator training, classroom experiences, roles, skills, and 
implementation challenges on problem-based learning. Survey data revealed that most 
participants indicated that their training was effective at helping them understand the philosophy 
of the teaching and learning approach, and the training provided them with sufficient insight 
into how to manage the small group learning process. 
 

Introduction 

Instructional practices over the years in mathematics classrooms have not varied 

significantly. In addition, they have not adequately aided students in developing a deep 

understanding of mathematical ideas. Mathematics education stakeholders continue to seek a 

methodology that will best educate learners of the 21st century since many students in the 

mathematics classroom are lacking in their ability to understand, communicate, and apply key 

concepts in mathematics (O’Brien, 1999; 2004). In an attempt to meet the needs of today’s 

diverse learners, some national organizations are urging classroom teachers to use innovative 

methods of instruction that aid students in demonstrating comprehensive learning and apply it to 

real world settings (National Council of Teachers of Mathematics, 2000; National Science 

Foundation, 2006). 

Education stakeholders are now placing an emphasis on students’ ability to understand and 

use information, not just merely possess it (Richardson, 2003). According to many researchers 

and practitioners, problem-based learning (PBL) is an innovative inquiry-based, viable 

instructional approach for teaching mathematics that can aide students in reaching these 

significant learning goals (Erickson, 1999; Lubienski, 1999; Ronis, 2008). Consequently, the 

purpose of this study was to examine the perceptions of mathematics teachers of their PBL 

professional development and implementation of PBL into their classroom.   
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Theoretical Framework and Literature Review 

Problem-based learning has its roots in constructivism, but many of these views date back to 

John Dewey (1938). While PBL has a foundational framework in medical education, it is 

consistent with the principles of constructivism (Torp & Sage, 2002). In classrooms using 

problem-based learning, teachers address these principles of constructivism, and Savery and 

Duffy (1995) have argued that PBL learning environments may be one of the best examples of a 

constructivist learning environment. 

Research in PBL usually focuses on whether students who are taught with PBL learn as 

much as students who are taught with a traditional instructional approach (Gallagher & 

Gallagher, 2013). Research supports that students in PBL classrooms can learn as much as or 

more than students taught using a traditional method if the problems are closely aligned with 

content objectives (Gallagher & Stepien, 1996; Goodnough & Cashion, 2003). Students must 

also be provided with appropriate support (Hmelo-Silver, Duncan, & Chin, 2007; Vardis & 

Ciccarelli, 2008) for PBL to be effective. Research specifically related to secondary school 

mathematics students or secondary mathematics teachers is scarce. 

However, a recent study in secondary school mathematics regarding students' academic skill 

development and motivated strategies for learning supports that PBL has a positive impact on 

students’ learning. Results showed that at-risk and minority students benefited significantly from 

PBL in learning mathematics. Though the academic performance gap was present, it was 

significantly reduced. Also, PBL students were more intrinsically motivated and showed 

significantly higher critical thinking than their public-school counterparts (Holmes & Hwang, 

2016). Though there are a few other studies related to PBL in the mathematics classroom 

(Cerezo, 2004; Clarke, Breed, Fraser, 2004) more investigations are needed.  

Methodology 

An online survey approach was selected to collect the data since many participants were 

geographically disbursed. Another advantage of the online survey was that it insured anonymity 

and confidentiality.  Moreover, it allowed respondents to complete the survey online when it was 

convenient for them increasing the chance of a high response rate.   

Participants 

The target population in this study was secondary mathematics teachers who had completed a 

PBL professional development workshop. The sample participants were purposefully selected 
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based on these criteria. This sample consisted of teachers who were members of the Problem-

based Learning Network (PBLN) at the Illinois Mathematics and Science Academy (IMSA). 

PBLN provides professional development to PBL facilitators, who range in experience from 

novice to expert, on inquiry-based teaching strategies and skills.  Teaching and facilitation 

experience are indicated in Figure 1.   

The PBL training ranged from a one-day session to a two-week summer session. The 

facilitators participated as learners (or students) engaged in a problem scenario. Therefore, they 

had the opportunity to experience PBL in a way that is similar to how their students would 

experience it. They also engaged in the stages of designing a PBL scenario for their classrooms 

and collaboratively developed strategies to implement them effectively into their classrooms. 

They gained first-hand experience in facilitating or coaching strategies while identifying learning 

objectives linked to state and national standards and benchmarks. There were 75 secondary 

mathematics teachers who had gone through the PBLN training. All PBLN participants who 

responded to the survey were included in this study. 

 

 

 

 

 

 

Figure 1. Teaching and Facilitation Experience of PBL Teachers. 

Instrument 

Likert scale questions for the Facilitator Perception Survey-Revised were adapted from a 

survey used in a study by McLean (2003) in which he categorized items under four key 
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facilitation competencies (i.e. facilitation skills, curriculum knowledge, personal qualities, and 

subject-matter expertise). For the present study, revisions were made to the original instrument 

based on a review of the literature on PBL in secondary education, and validity and reliability 

results were reported. The revised survey includes questions that assessed participants’ 

demographic characteristics as well as questions that related to participants’ perceptions of the 

facilitator’s roles, skills, training, classroom experiences, and implementation challenges. For 

many questions, participants were asked to respond using a continuum scale where 1 = effective, 

2 = weak, 3 = satisfactory, 4 = good, and 5 = excellent. 

There are also six open-ended questions on the revised survey that assessed the facilitator’s 

perception of PBL. Sample questions include (a) what motivated (or prompted) you to 

implement PBL in your classroom (e.g., believed in the PBL philosophy, my head of 

Department/School asked me to implement PBL); (b) based upon your facilitation experience, 

describe the strengths and weaknesses of the PBL approach to teaching; (c) describe any 

challenges and/or frustrations you have experienced in the PBL facilitation process.  

Procedure 

The sample consisted of 75 secondary school mathematics PBL facilitators, which revealed 

a 55% (n = 41) response rate. All participants completed the standard demographic information 

(i.e. gender, age, in what state do you live, highest level of education, number of years teaching 

mathematic). The data were analyzed using SPSS, version 21. As illustrated in Table 1, a 

demographic profile emerged from the survey sample indicating a heterogeneous sample in a 

number of categories (e.g., age, gender, education, teaching experience, and facilitator training). 

Table 1 

Survey Participants Demographics 

Survey Item Response n Percent 
Teaching Experience >10 years 22 54 
 7-10 years 12 29 
 3-6 years 6 15 
 < 3 years 1 2 
Facilitator Experience >10 years 0 0 
 7-10 years 1 3 
 3-6 years 5 12 
 <3 years 32 78 
 Missing 3 7 
Number of Problem Facilitated < 2 19 48 
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 2-5 16 40 
 >5 5 12 
 Missing 1 3 
Highest Level of Education Bachelor’s Degree 6 15 
 Master’s Degree 34 83 
 Education Specialist Degree 1 2 
Age <40 13 32 
 41-50 22 54 
 >50 6 14 
Gender Female 27 66 
 Male 14 34 

 
Results and Discussion  

Research Question 1 

Three questions on the survey focused on participants’ perceptions of their PBL training. 

One question asked participants to rate their knowledge or understanding of the PBL philosophy, 

prior to PBL training. The responses to this question indicated that before PBL training, 7.5% (n 

= 3) of the respondents rated their knowledge or understanding of the PBL philosophy as good 

or excellent. On the other hand, when asked to rate their knowledge or understanding of the PBL 

philosophy after PBL training, 80.7% (n = 32) of the respondents rated it as good or excellent. 

Forty-four percent (n = 17) agreed or strongly agreed with the statement: “I feel/felt confident 

before facilitating my first session,” but an equal percentage (44%) of participants (n = 17) were 

not sure or disagreed with this statement. Also, two participants chose not to respond to this 

statement. 

Less than half (47.5%) of the participants (n = 19) agreed that their first experience 

facilitating was a success, and an equal percentage (47.5%) of participants (n = 19) felt confident 

after their first facilitation experience. Once the participants facilitated one theme, 65% (n = 26) 

agreed or strongly agreed that the PBL training made more sense in terms of understanding the 

role of the facilitator in small group learning sessions, and only 5% disagreed (n = 2). 

Research Question 2 

Research question two addressed whether there were any differences in the perceptions of 

roles and responsibilities among secondary mathematics PBL facilitators with different levels of 

facilitation experience (i.e., novice, intermediate, advanced, and expert). To determine if there 

were mean differences between the novice and advanced, secondary mathematics PBL 

facilitators on their roles scores, the ANOVA test was conducted. The mean roles score in the 
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novice group (M = 3.33, SD = .44) was slightly lower than the mean roles score in the advanced 

group (M = 3.39, SD = .08). The results of the ANOVA test revealed F(1, 38) =.22, p = .64. 

Although the mean score for the advanced group was larger than the mean score for teachers in 

the novice group, the results indicated that there were no differences in the perceptions of roles 

and responsibilities among secondary mathematics PBL facilitators with different levels of 

facilitation experience (i.e., novice and advanced). At an alpha of .05, this finding supports that 

there is no statistically significant difference between mean roles perception scores of novice and 

advanced secondary mathematics PBL facilitators. The effect size statistic, eta-squared, revealed 

.0056, which indicates a very small effect based on Cohen’s (1988) guidelines. However, this 

value indicates that .56% (less than 1%) of the variance in the roles score can be explained by 

facilitation experience (number of problem scenarios facilitated). 

Research Question 3 

Research question three addressed whether there were any differences in the perceptions of 

the skills needed for effective implementation of PBL among secondary mathematics PBL 

facilitators with different levels of facilitation experience (i.e., novice and advanced). Like the 

previous research question, analysis of variance (ANOVA) was used to answer this research 

question. At an alpha of .05, this finding supports that there is no statistically significant 

difference between the mean skills perception scores of novice and advanced secondary 

mathematics PBL facilitators. The effect size statistic, eta-squared, revealed .0411, which 

indicates a small effect based on Cohen’s (1988) guidelines. Given the small effect detected, it is 

possible that the sample size in this study might have influenced the results. 

Research Question 4 

Research question four addressed the challenges secondary school mathematics, PBL 

facilitators perceive they encounter while they are planning for and implementing PBL into the 

classroom. Twenty-five participants responded to the invitation to comment on this open-ended 

question: Describe any challenges and/or frustrations you have experienced in the PBL 

facilitation process. The most frequent comments were related to challenges concerning the 

roles of a facilitator. Thirteen participants commented on the difficulty and challenge of their 

roles. For instance, this is how one participant described the issue: “The students have had little 

experience of working together in a group. The process of trying to teach them how to work 

together while doing the problem was very difficult.” At the same time, another participant 
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explained that with time they improved in the role of facilitating the small group learning 

process. Specifically, the participant stated, “I am always working on the group dynamics. I am 

getting better at teaching students how to work in groups.” These and other comments indicated 

that a diverse group of facilitators viewed the same roles as a challenge. 

In general, facilitators indicated that they face a number of challenges, many of which 

describe the discomfort with their role. The level of discomfort seemed to vary from facilitator 

to facilitator. Time, curricular, and resource constraints were also perceived as challenges, 

though of a lesser magnitude than facilitators’ discomfort with their roles. The open response 

question on the perception of facilitators’ PBL implementation challenges suggests that 

challenges vary among participants with the roles of the facilitator mentioned most often as a 

significant challenge. The responses from this open-ended question seemed to support the results 

from the closed response questions. 

Implications 

With minor revisions, the Facilitator Perception Survey-Revised may be useful in other 

secondary education content areas using the PBL approach. It is applicable for new facilitators, 

practicing facilitators, individuals considering PBL facilitation, and researchers. The survey and 

the findings of this research also have practical implications for teacher educators involved with 

teacher development in secondary education. Barrows (1994) argued that the training of the PBL 

facilitator impacts the success or failure of PBL. Individuals designing learning experiences for 

facilitator training workshops may find this instrument useful as a vehicle to examine facilitators’ 

perceptions. It may serve as a tool to engage workshop participants in activities to stimulate 

discussion on PBL issues. It can also be used as a self-evaluation tool. This may also increase 

self-awareness of a commitment to the PBL model that may benefit professional development 

programs and individuals. 
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In this pilot study, listening and questioning practices of a secondary mathematics teacher were 
investigated for two lessons within small group and independent practice time. The two lessons 
included a traditionally structured lesson on dividing decimals and an inquiry-based lesson on 
systems of linear inequalities. Using thematic analysis, the types of questions asked, questioning 
patterns, and modes of teacher listening were deductively coded, and questioning sequences 
were inductively analyzed to characterize how teachers listen to and question students’ 
mathematical thinking. Findings included four themes, two for each lesson, which indicated a 
transformation of the teacher’s listening and questioning practices.   

In recent years, mathematics education researchers have become increasingly interested in 

professional noticing of students’ mathematical thinking (Jacobs, Lamb, and Philipp, 2010; 

Sherin & van Es 2009). Davis (1996) proposed a “sound alternative” (p. xxi) to visually-focused 

mathematics teaching practices by attending to teacher listening.  Echoing Davis, this pilot study 

complements professional noticing by attuning to teacher listening as well as associated teacher 

questioning practices implemented in secondary mathematics classrooms.  

Because the act of noticing is a hidden practice (Jacobs et al., 2010) involving attention to 

nonverbal artifacts, this paper used the term monitoring (Smith & Stein, 2010) as a broader 

teaching practice. In the act of monitoring, a teacher might notice students’ written work and 

body language, and also teachers have the opportunity to listen to student thinking during small 

group work. The purpose of this pilot study was to characterize how teachers listen to and 

question students’ mathematical thinking while monitoring student work. The research question 

addressed: What are characteristics of a mathematics teacher questioning patterns when a teacher 

listens to students’ mathematical responses while actively monitoring small group work?  

Related Literature 

Question Types 

National Council of Teachers of Mathematics (NCTM, 2014) stressed the importance of the 

types of questions teachers ask. NCTM’s framework included four question types: gathering 

information (what do students know?), probing thinking (can students explain their thinking?), 

making the mathematics visible (can students relate mathematical ideas?), and encouraging 

justification and reflection (can students prove their strategy works in other problems?). In 
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typical traditional lessons, teachers rely on gathering information questions providing students 

“very little opportunity to engage in meaningful mathematical activity” (Wood, 1998, p. 172). To 

identify teacher questions, Boaler and Brodie (2004) suggested including statements functioning 

as questions (e.g., The linear parent function is-) since some questions do not seek a response. 

Questioning Patterns 

Eddy, Harrell, and Heitz (2017) reasoned that “for teachers to be effective questioners they 

need both quality questions and good question structure” (p. 11). Traditional questioning 

structures have been associated with Mehan’s (1979) initiate-response-evaluate (IRE) sequence. 

A teacher initiates a sequence with a gathering information question. Then, the teacher ends with 

an evaluative move indicating correctness. IRE structures funnel student attention towards a 

predetermined response (Wood, 1998). Reform-oriented revisions of the IRE sequence include 

the initiate-response-follow-up (IRF) sequence to indicate a non-evaluative move and the 

expanded IRFRF format (Chin, 2006). In an IRFRF, student responses and teacher follow-up 

moves repeat until a final teacher response (i.e., “okay,” “very good”). Follow-up moves could 

be evaluative in a funneling pattern. However, when teacher questions attune student attention 

towards connections of student ideas, these are focusing patterns (Wood, 1998).  

Modes of Listening 

Davis (1996) conceptualized three modes of listening (evaluative, interpretive, and 

hermeneutic) to describe ways in which a middle grades teacher enacted listening. Evaluative 

listening positions a teacher in an authoritative role seeking correctness in student responses, 

whereas interpretive listening opens dialogical spaces for student sense-making. However, Davis 

noted that mathematical authority remained with the teacher during interpretive listening since 

student interpretations were paralleled to teacher explanations. Furthermore, when enacting 

interpretive listening during a discussion, the teacher maintains authority over which student 

ideas to amplify. To that end, Davis described a third type, hermeneutic listening, as a mode of 

listening in which the teacher enacts a participatory role with the collective learners.  

Wait Time 

Rowe (1986) acknowledged teacher wait time contributed to in-depth student responses. 

Rowe claimed that when teachers wait at least three to five seconds after a teacher question 

(WT1) as well as after student responses (WT2) (see Figure 1), the extra student-thinking time 

afforded students opportunities to elaborate on thoughts and increased student-to-student 
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interactions. Both situations create opportunities for teachers to listen to students’ mathematical 

reasoning. 

 
Figure 1. IRE soundwave image. IRFRF responses include chained images of the IRE figure. 
Image adapted from https://openclipart.org/detail/202430/raseone-soundwave-1.  

Method 

Participant 

One teacher, Sharon, was a veteran secondary teacher teaching in an urban school district. 

She was purposefully selected for this pilot case study because her questioning had improved 

from the first observation to second observation. During the first classroom observation, she 

taught a traditional lesson as she modeled, guided, and monitored individual practice on decimal 

division problems. The second observation involved an inquiry-based lesson as students 

investigated systems of linear inequalities in small groups. 

Data Collection and Analysis 

Sharon’s two classroom observations were video recorded using Swivl™ (Tetelbaum & 

Lamb, 2010) robot. Thematic analysis (Braun & Clarke, 2006) included data preparation, 

deductive provisional coding, and inductive tabletop categorization (Saldaña, 2016). Coding was 

performed for the 7.5-minute sections of small group or independent practice (see Figure 2) only 

because that is when the teacher had opportunities to listen to student thinking while monitoring 

student work. For this study, the last 15 minutes of each lesson were coded for comparison. 
 0:00-7:30 7:30-15:00 15:00-22:30 22:30-30:00 30:00-37:30 37:30-45:00 

Lesson 1 Whole Group Whole Group Whole Group Whole Group Independent Independent 

Lesson 2 Small Group  Whole Group Small Group Small Group Small Group Whole Group 

Figure 2. Lesson map indicating audience level for more than half of each 7.5-minute section. 

Data preparation. During data preparation, both observation videos were watched and re-

watched to gain familiarity with the lesson flow. The transcribed videos were focused on teacher 

talk-turns but excluding student talk-turns since student information was not included in the IRB. 

Transcripts indicated teacher pauses greater than three seconds in place of student talk-turns. 
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Next, each 45-minute lesson was divided into 7.5-minute sections (Hill, Charalambous, & Kraft, 

2012) to map when small group or independent practice time occurred for at least half of a 

section (see Figure 2).  

Two researchers independently used V-Note® (Emig, 2014) to code teacher questions, wait 

time, teacher listening, monitoring, teacher explaining, general teacher responses, and non-

instructional time. Monitoring occurred before teacher questions, while wait time occurred after 

teacher questions and between student responses. The teacher’s responses to students were coded 

as teacher explaining of mathematical ideas or as a general teacher response (e.g., that’s right!). 

Non-instructional time included administrative tasks or classroom management. 

At the outset of this project, the times of the teacher monitoring, explaining, responding, and 

non-instructional time were not considered as separate identification markers. However, after 

reviewing the videos, both researchers agreed that identifying each instance aided in the 

purposeful selection of lesson sections for further analysis. Intercoder agreement was attained 

through regular conversations throughout the data preparation phase.  

Provisional coding. Provisional coding (Saldaña, 2016) was used as a theory-driven 

approach, beginning with established frameworks and allowing for updating of codes during the 

coding process. Using V-Note®, NCTM’s (2014) framework for types of questions and Davis’s 

(1996) modes of listening were used to initially code question types and modes of listening. In 

Figure 3, the questioning and listening frameworks are interrelated in one matrix.  
Mode of Listening 

Question Type 
Evaluative 

(for) 
Interpretive 

(to) 
Hermeneutic 

(with) 

Gathering Information 
(know) 

What do you know about 
inequalities?    

Probing Thinking 
(explain) 

How did you know 
which way to shade?  

How did the coordinate 
plane help in this task?  

I’m not sure how you 
found the inequality, can 
you show or explain to me 
a different way? 

Making the Mathematics 
Visible 
(relate) 

Based on the graph, 
what’s the difference 
between an equation and 
an inequality?  

Explain the difference 
between shading and not 
shading the streets on the 
map. 

How is this task different 
or the same as the first 
task?  

Encouraging Justification 
and Reflection 
(prove) 

How do you know that 
you found the  mystery 
location?  

How might you prove that 
you have found the 
mystery location? 

Design a scenario using 
three inequalities and your 
own mystery location.  

Figure 3. NCTM’s (2014) framework for questions used in mathematics teaching and Davis’s 
(1996) modes of listening combined. Questions in the hermeneutic listening column were created 
for the matrix as Sharon’s lessons did not include questions that invoked hermeneutic listening. 
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Two cells are gray because when one asks gathering information questions, the intent is to listen 

for specific responses. In the matrix, example questions were adapted from Sharon’s second 

lesson except for the hermeneutic listening column. These questions were created since 

hermeneutic listening of mathematical thinking was not evident in either lesson. 

 In addition to mathematical questions, general questions and soliciting student responses 

codes were added. General questions included non-functioning questions (e.g., Right?) (Boaler 

& Brodie, 2004), classroom management, or progress management (e.g., Are you done yet?). 

Teacher listening was not coded when student responses were not mathematical. Example 

questions included when Sharon called on a student, asking students to repeat their response 

(e.g., Did you say something?) or seeking student questions (e.g., What’s your question?). 

 Categories. To prepare for an inductive analysis, IRE and IRFRF lesson segments were 

identified within the 7.5-minute sections. Lesson segments were partitioned based on initiating 

teacher questions (see Figure 3) and final teacher statements.  Each lesson segment represented 

one teacher-student interaction. Last, the V-Note® coding display (see Figure 4) and transcripts 

were printed and physically sorted on a tabletop to identify recurring patterns (Saldaña, 2016). 

For both lessons, lesson segments were selected from the last 15 minutes (two 7.5-minute 

sections) of each lesson for a direct comparison. For the first lesson, 8.5 minutes were spent in 

independent practice across the last two lesson sections, while in the second lesson 7 minutes and 

47 seconds were used for small group instruction across the last two sections. The remainder of 

the 15 minutes were spent in whole group instruction. 

 

Figure 4. A portion of the V-Note® interface displaying data preparation codes and the 
soundwave image. 

Findings 

Four categories (two within each lesson) were identified during the tabletop sorting. Table 1 

summarizes the instructional time spent during the last fifteen minutes of each lesson. Wait time 
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after teacher questions and after student responses were separated in the wait time column.  

Table 1 

Duration and Percentage of Instructional Time 

Lesson Type Monitoring Questioning Listening Wait Time Explaining General 
Traditional (8:30)* 
Dividing Decimals 

3:11 (37%)+ 0:30 (6%) 0:16 (3%) 0:17 (3%) 
0:12 (2%) 

0:59 (12%) 0:20 (4%) 

Inquiry-based (7:47)** 
Systems of Linear Inequalities 

0:45 (10%)++ 0:55 (12%) 0:28 (6%) 0:19 (4%) 
0:12 (3%) 

1:07 (14%) 0:50(11%) 

Note: *The total time spent in independent practice.+Percents in this row are out of 8:30. **The total time spent in 
small groups.+Percents in this row are out of 7:47. Non-instructional time accounts for the remainder of the small 
group and independent practice time in each row. These measures were excluded from analysis as they were beyond 
the scope of the present study. 

Lesson 1: Traditional Lesson on Dividing Decimals 

Monitoring student work. Students worked independently at their desks with no student-

student interactions as Sharon walked amongst students working. The lack of interactions 

provided minimal opportunities for her to listen to student understandings, and interactions with 

only seven students were observed. Long stretches of monitoring time occurred between each 

interaction. Two students were asked if they wanted to display their work on the board; one 

agreed. Initiating questions for the next three interactions began with a general question to check 

progress (e.g., How’s it going?; Do you get this?). After asking the fifth student if he had a 

question, Sharon had the opportunity to listen to his understandings. The lesson segment ended 

as she explained how many decimal places to move. The last interaction started with a student 

question followed by funneled IRFRF sequence. Sharon ended the sequence by asking “How 

many groups of 11.86 [in 40]?” before moving to the next student without waiting for a response. 

Teacher explaining. Sharon asked a total of 17 questions spending only 30 seconds on 

questioning, and double that time explaining. Out of the 17 questions, six questions were the 

gathering information type. One gathering information question (Will 18 divide into 37?) was 

posed to a non-responding student before Sharon moved to addressing the whole group. The 

remaining five gathering information questions were in the IRFRF sequence (e.g., How many 

11s are in this 40?). In all instances, Sharon evaluatively listened for specific responses, asked 

questions in a funneling pattern, and explained how many places to move the decimal. She spent 

the most time correcting the student at the board. Rather than using the student mistakes as a 

learning opportunity, Sharon explained each step before moving to the whole group. 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 134



 
 

 

Lesson 2: Inquiry-Based Lesson on Systems of Linear Inequalities  

The goal of this lesson was for students to find a mystery location using systems of linear 

inequalities. Clues were provided, and students worked in small groups of three to four students 

to determine where the mystery location could be located. Sharon interacted with five different 

student groups, returning several times throughout the coded lesson sections.  

Focusing to funneling questioning pattern. In several lesson segments, Sharon adjusted the 

questioning pattern from focusing on student ideas to funneling student responses to 

predetermined endpoints. The lesson segments indicated Sharon’s use of interpretive listening as 

she made sense of student understanding. However, once she was able to gauge a student’s 

learning trajectory, the types of questions asked focused on probing student thinking and 

gathering information to lead students to her way of thinking. Sharon reverted to repeating and 

rephrasing questions to elicit predetermined student responses. 

Multi-leveled evaluative listening. Multi-levels of evaluative listening were evident in the 

different types of questions that were asked. For example, while Sharon may have asked, “What 

do you notice about the shading?”, she was still looking for a specific response to the inequality 

task. Sharon asked a total of 35 questions, which was double that of the first lesson. The types of 

questions included 14 gathering information questions (e.g., What kind of symbol do I still see in 

your inequality?), one probing thinking question (Where do you want your [y-intercept]?), one 

making the mathematics visible (Why is there a coordinate plane on your map?), and the 

remaining questions were general questions. In contrast to the first lesson, Sharon spent about an 

equal amount of time asking questions as she did explaining concepts.  

Implications 

The structure of the lessons contributed to the difference in Sharon’s teacher questioning and 

listening. With the change in lesson structure, Sharon interacted with more students, increased 

the number of questions asked which in turn increased the time spent listening. Wait time for 

both lessons were about the same indicating an area of growth. As Rowe (1986) claimed, when 

teachers attain an average wait time of at least three seconds, the quantity and quality of 

questions also improve. Teachers, such as Sharon, who are provided opportunities to practice 

intentional listening within supportive professional development, are more likely to attune 

teacher questions to student ideas presented in-the-moment of teaching.  

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 135



 
 

 

Acknowledgement 

This material is based on work supported by Teacher Quality Grants under NCLB of 2002: 

Public Law 107-110 II ESEA. Any opinions, findings, interpretations, conclusions or 

recommendations expressed in this material are those of the author and not necessarily represent 

views of the Texas Higher Education Coordinating Board. 

References 

Boaler, J. & Brodie, K. (2004). The importance, nature and impact of teacher questions. In D.E. 
McDougall & J.A. Ross (Eds.), Proceedings of the twenty-sixth annual meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education. 
(pp. 773-782). Toronto: OISE/UT. 

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 
Psychology, 3, 77-101. 

Chin, C. (2006). Classroom interaction in science: Teacher questioning and feedback to students' 
responses. International Journal of Science and Education, 28, 1315-1346. 

Davis, B. (1996). Teaching mathematics: Toward a sound alternative. New York, NY: Garland. 
Eddy, C.M., Harrell, P., & Heitz, L. (2017). An observation protocol of short-cycle formative 

assessment in the mathematics classroom. Investigations in Mathematics Learning, 9, 130-
147. 

Emig, B.R. (2014). V-Note® (Version 2.2.3) [Computer software]. Retrieved from 
http://www.v-note.org 

Hill, H.C., Charalambous, C.Y., & Kraft, M. (2012). When rater reliability is not enough: 
Observational systems and a case for the G-study. Educational Researcher, 41(2), 56–64 

Jacobs, V.R., Lamb, L.L.C., & Philipp, R.A. (2010). Professional noticing of children's 
mathematical thinking. Journal for Research in Mathematics Education, 41, 169-202. 

Mehan, H. (1979). Learning Lessons: Social organization in the classroom. Cambridge, MA: 
Harvard University Press. 

National Council of Teachers of Mathematics (2014). Principles to action: Ensuring 
mathematical success for all. Reston, VA: NCTM. 

Rowe, M. B. (1986). Wait time: Slowing down may be a way of speeding up! Journal of 
Teacher Education, 37, 43-50. doi:10.1177/002248718603700110 

Saldaña, J. (2016). The coding manual for qualitative researchers. (3rd ed.). Thousand Oaks, 
CA: Sage. 

Sherin, M.G., & van Es, E.A. (2009). Effects of video club participation on teachers’ 
professional vision. Journal of Teacher Education, 60, 20-37. 

Smith, M. S. & Stein, M. K. (2011). 5 Practices for orchestrating productive mathematics 
discussions. Reston, VA: National Council of Teachers of Mathematics. 

Tetelbaum, V. & Lamb, B. (2010). Swivl™ C-Series Robot (Model SW3322) [Apparatus and 
software]. Retrieved from http://www.swivl.com 

Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or 
focusing? In H. Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and 
communication in the mathematics classroom (pp. 167–178). Reston, VA: National Council 
of Teachers of Mathematics. 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 136



EXAMINING LONGITUDINAL OUTCOMES OF BLENDED PROFESSIONAL 
LEARNING 

 
Georgia A. Cobbs 

University of Montana 
georgia.cobbs@umontana.edu 

Jennifer Luebeck 
Montana State University 

jennifer.luebeck@montana.edu 

This research study investigated the long-term outcomes of an innovative blended professional 
learning program designed to transform elementary teachers’ approaches to mathematics 
teaching and learning in accordance with recently adopted content and practice standards. This 
paper describes the professional learning and its sustained impact by examining the ways in 
which participants continued to implement their acquired knowledge eighteen months after the 
program’s conclusion. Site visits to seven of the project’s 15 partner districts resulted in 28 
teacher interviews and 25 classroom observations. The reported findings chronicle positive 
outcomes related to classroom practice, collaboration, and teacher leadership.  

Introduction 

As mathematics educators, we desire all teachers to be life-long learners. This desire fuels 

our efforts to construct professional learning opportunities enabling teachers to thrive and grow 

in their profession. Effective professional development is founded on a multi-dimensional, long-

term framework that integrates meaningful content, active learning, and collective participation 

(Desimone, 2009). It equips teachers for continuous growth, for enhancing student achievement, 

and for leading others (NCSM, 2008). One way to incorporate these qualities into extended 

professional learning is through a blended approach combining face-to-face and online 

methodologies. This study investigated the longitudinal impact of such a program. 
The STREAM project (Standards-based Teaching Renewing Educators Across Montana) 

was funded as a three-year U. S. Department of Education Mathematics and Science Partnership 

to “provide intensive, content-rich professional development to teachers and other educators, 

with the goal of improving classroom instruction and ultimately, student achievement in math 

and science” (U.S. DOE, n.d.). The project was guided by a mandate to (1) create a statewide 

systemic, research-based and sustainable approach for improving teacher content knowledge and 

student achievement of Montana’s adopted version of the Common Core State Standards for 

mathematics, and (2) design and deliver interactive, on-demand, high-quality learning modules 

for statewide professional development via school-based and distance learning. 

The STREAM partnership included faculty at two universities working with teams of 

teachers and administrators from 15 school districts of varied size and demographic makeup. 

Two cohorts of teachers in grades 4-7 participated in blended professional learning designed to 
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increase their own understanding of mathematics content and mathematical practices, while 

preparing them to effectively implement the new standards and share their expertise with peers. 

Each cohort completed eight months of blended professional learning with face-to-face and 

online components, then composed strategic plans for implementation and dissemination in their 

districts the following year. Pre-post test results confirm that the STREAM program increased 

participants’ knowledge of mathematics content and practice (e.g., large effect size with 

significant gains for 84.5% teachers in the first cohort; for detailed results see Luebeck, Roscoe, 

Cobbs, Diemert, & Scott 2017; Shaw, 2013, 2014). Evaluation data show that upon completing 

the program teachers were highly motivated to apply their learning; however, the project did not 

have funding to follow teachers back to their districts and observe the effects of STREAM 

professional learning on their classrooms and colleagues. 

This research study, conducted 18 months after the project’s conclusion, explored what 

elements of the “STREAM experience” were enduring, as well as how they influenced teacher 

practices and student learning. Concisely stated, the research questions guiding this study are: 

How did the STREAM project’s professional learning design impact teaching and learning in 

mathematics classrooms? How did participating teachers experience and describe this impact? 

Answers to these questions illuminate the long-term outcomes of STREAM professional 

learning, offering implications for similar programs and further research.   

Framework 

Professional development has long been viewed as a primary vehicle for teacher change and 

improvement. In 1991, the National Council of Teachers of Mathematics called for the design of 

“pre-service and continuing education programs that reflect the issues of reform and change that 

must be implemented” (p.184). Twenty years later, the Conference Board of the Mathematical 

Sciences (CBMS) affirmed that the “preparation and further education of mathematics teachers” 

is a widely shared responsibility whose “collective goal needs to be continual improvement” 

(2012, p.3). Effective professional development is grounded in theories of adult learning 

(Merriam, 2001) and transformational learning (Baumgartner, 2001). It is also grounded in the 

content needs of teachers. The CBMS observed that content-based professional learning 

supported by federal math-science partnerships for K-12 teachers has “changed their attitudes 

about mathematics, and increased their mathematical interest and abilities. Moreover, it has 

increased the achievement of their students” (2012, p. xii).  
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A focus on content is only one of several criteria shown to support effective professional 

development. These include: (1) alignment with school goals, state and district standards and 

assessments, and other professional-learning activities; (2) a focus on core content and modeling 

of teaching strategies for that content; (3) opportunities for teachers to engage in active learning; 

(4) provision for sustained and collaborative learning; and (5) follow-up and continuous 

feedback (Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 2009; DeMonte, 2013; 

Reiser, 2013). These criteria parallel the components of Desimone’s “core conceptual 

framework” for effective professional learning (2009, p. 183), which advocates for a focus on 

content, active learning, coherence, duration, and collective participation. The STREAM project 

made a deliberate effort to address these criteria in its blended professional learning design.  

STREAM Professional Learning 

The blended approach to STREAM professional learning combined four online modules with 

three face-to-face workshops. The curriculum emphasized Mathematical Practices in the context 

of Number Systems/Operations and Ratio/Proportion, both essential content domains in grades 

4-7. A theme of Teacher Learning and Leadership prepared participants to implement and share 

their learning upon returning to their districts. These four themes (Figure 1) were launched at a 

workshop where teachers learned mathematics, examined standards and strategies, and prepared 

for subsequent online learning. After completing two online modules, they met again midyear to 

engage in active and collaborative learning designed to form connections across the themes. 

Theme 1 - Common Core Mathematical Practices (MPs) and STEM Connections 
Teachers learn how to embed MPs in everyday instruction, how to assess students’ use of MPs, 
and how modeling and other MPs provide natural connections to science, technology, and engineering.  
Theme 2 - Grades 4-7 Learning Progression: Number Systems and Operations 
Teachers learn how concepts progress and unfold across clusters, domains, and grade levels. They trace 
the development of number concepts through operations, properties, and systems. 
Theme 3 - Grades 4-7 Learning Progression: Fraction-Ratio-Proportion 
Teachers learn how concepts progress and unfold across clusters, domains, and grade levels. They trace 
the development of proportional reasoning to its conceptual roots in fraction and ratio. 
Theme 4 - Teacher Learning and Leadership: Facilitating PLCs, Modeling Instruction 
Teachers are expected to disseminate materials from Themes 1-3 in their home districts. Theme 4 
provides them with skills and strategies to promote school-based collaborative teacher learning and to 
model standards-based instruction for their peers. 
 
Figure 1. Outline of the STREAM project’s thematic curriculum. 

 
Following the final two online modules, a four-day summer academy provided opportunities 

for teachers to work on extended mathematics tasks, synthesize their learning, and develop 
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strategic plans to productively apply their knowledge in the coming year. Each district team 

filled out a strategic planning template where they described in detail their goals, the scope of 

their implementation plans, and their intended audience. They prepared a sequence of specific 

professional learning activities to occur within a one-year timeline. After two cycles of review 

and revision, the plans were put into action in teachers’ home districts the following academic 

year. The first cohort of teachers (N = 39) carried out their strategic plans over two years; the 

second cohort (N = 19) enacted their plans for only one year before the three-year program was 

concluded. Reports submitted by district teams during the implementation period showed that the 

strategic plans were, for the most part, carried out as intended. This research study focused on 

sustained outcomes beyond the funding period, examining how participants continued to 

implement their acquired knowledge many months later (Table 1).  

Table 1   

STREAM Project Research Timeline  

Year Participants Research-Related Activities 
Y1: 2012-13 39 teachers (15 districts) Y1 teachers engage in professional learning 
Y2: 2013-14 19 teachers (7 districts) Y1 teachers implement district strategic plans 

Y2 teachers engage in professional learning 
Y3: 2014-15  Y1 teachers continue district strategic plans 

Y2 teachers implement district strategic plans 
Y4: 2015-16 Ongoing individual and district implementation – no project monitoring 
Y5: 2016-17 28 selected teachers Data collection: school site visits and interviews 

Methodology 

Data were collected from the Year 1 cohort, comprised of 39 classroom teachers from 15 

district teams, as well as project mentors and administrators. Employing purposeful selection, the 

researchers identified teams that were successful in carrying out their strategic plans and 

represented the widest possible range of district demographics. The seven selected districts 

included one independent K-8 district, two remote and rural districts (one with only 35 students), 

two districts in medium-size cities, and two large districts (one with over 11,000 students). 

Surprisingly, six of the seven administrators who originally partnered with the project no longer 

held the same position. Establishing contact was also challenging in a few cases where teachers 

had left a district or moved into administration. Most responded willingly to a request to 

participate, leading to site visits and interviews conducted with 28 teacher participants over a 5-

week period in Fall 2016. 
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The original intention was to introduce the interview protocol in an on-site interview and 

audio record teachers’ responses. However, several teachers early in the process asked to see the 

interview questions in advance and, unsolicited, sent their typed or handwritten responses to the 

visiting researcher prior to the site visit. This pattern became the norm and proved to be an 

effective strategy for in-depth data collection. By writing out narrative responses to the protocol, 

teachers had time to reflect and thus provide more authentic perceptions of how their STREAM 

experience continued to influence mathematics teaching and learning in the present day. In some 

cases, they reflected on the questions with other STREAM participants from their school, 

resulting in more accurate recall and more sensitive observations of impact.  

The visiting researcher reviewed the written responses to prepare for each interview, noting 

opportunities to clarify, expand on, and probe the broadly posed interview questions: 

1. In what way has your STREAM experience influenced your teaching? 
2. In what way has your STREAM experience influenced your interaction with others 

(teachers, students, administrators)? 
3. What, if any, influence has your STREAM experience had on other aspects of your 

professional activity? 
4. How, if at all, has STREAM influenced the continued implementation of Montana’s 

Common Core Standards for Mathematics in your school?  
 

During the 20- to 40-minute interviews, the researcher scripted detailed notes elaborating on the 

written responses. Interviewing one participant sometimes resulted in a referral to another 

STREAM teacher in the school who did not initially respond to requests for an interview. To 

enhance and provide context for the interviews, the visiting researcher also interviewed current 

administrators and informally observed mathematics lessons taught by STREAM participants 

while on site. Written teacher narratives and scripted interview notes were collected from 24 full-

time teachers, with additional data gathered from two teacher-coaches and two teacher-

administrators. Where possible, informal data from school administrators and classroom 

observations were used to corroborate data reported in the teachers’ narratives and interviews. 

The first phase of analysis involved only the visiting researcher who conducted the 

interviews. Written responses to each interview question were analyzed separately and a set of 

codes developed for each question. The codes, along with corresponding evidence in the form of 

quotes, were entered into a spreadsheet. These codes were then augmented with additional data 

from the scripted interview notes. Codes representing similar concepts were grouped into 
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categories, while others were identified as distinct. In the next phase of analysis, the second 

researcher reviewed the codes and categories, referring to the raw data for clarification as 

needed, and either confirmed the uniqueness of a category or identified similar categories that 

could be combined. Where analysis differed (about 25% of categories), both researchers re-

examined the data and codes until they reached consensus. In this process, some categories were 

collapsed or condensed, while others were enhanced with additional data.  

Findings 

Teachers described and demonstrated a variety of sustained positive outcomes that they 

attributed to their STREAM professional learning experience. They also noted outcomes and 

practices that had diminished over time due to changes in district priorities, administrative 

turnover, or other circumstances. The findings presented here represent the most powerful 

sustained outcomes, condensed into three overarching themes and discussed below. 

Transformed Instructional Practice 

Teachers reported unequivocally that as a result of participating in STREAM, they were 

consistently applying more research- and standards-based instructional strategies in the 

classroom. The most frequently reported changes were increased use of hands-on teaching 

methods, transforming traditional direct instruction into a student-centered approach, and 

incorporating critical thinking questions. Teachers also noted qualitative changes in teaching: 

“STREAM…taught me to go deeper with mathematical concepts….We need to have the big 

picture.” One teacher described a shift toward giving students greater ownership of their learning 

and encouraging peer-to-peer discussion, ending with “I became a constructivist!”  

Teachers also reported that they continued to purposefully incorporate the Common Core 

Mathematical Practices into instruction, due largely to how this was modeled in the STREAM 

curriculum. They articulated the importance of deliberately engaging their students in well-

defined and appropriate mathematical practices on a consistent basis – not merely posting the list 

of practices on a classroom wall or vaguely referencing them in lesson plans. 

Collaboration and Community 

A sustained pattern of professional collaboration and personal interaction has resulted from 

participation in STREAM professional learning. One teacher valued the strong bonds formed 

through “building relationships and working deeply over time.” Lesson studies and peer 

observations, conducted within schools or districts as part of STREAM strategic plans, opened 
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up levels of communication that had not existed before. Several referred to an increase in the 

“amount of discourse among staff members,” particularly across multiple grades. The largest 

district team noted that “teachers share across grade levels,” while in the smallest district, 

“STREAM got us to do K-8 things together.” Teachers at one school described how STREAM 

motivated them to share their students’ progress at the end of each year and discuss challenges 

students might have as they entered the next grade. Another teacher echoed: “Our STREAM 

goals helped encourage common expectations and language in math.”  

Teacher Confidence and Leadership 

Participants repeatedly referred to how the STREAM experience increased their confidence – 

not only in their own understanding of mathematics, but also regarding how to effectively teach 

mathematics. This propelled them to collaborate productively with other teachers and to facilitate 

learning among their peers. A teacher from a large district observed, “The STREAM members 

are still viewed as math leaders in their schools…helping make decisions that will move the 

district forward.”  Another added, “We are still used as a resource in our building.” 

A number of STREAM participants had moved beyond self-improvement to leading others in 

their school and district or taking on more systemic leadership roles (NCSM, 2008). One of these 

claimed that prior to her STREAM experience she would never have viewed herself as a 

mathematics educator. She and other participants reported how they were influencing 

mathematics education across Montana through modeling effective instruction, providing 

professional development, or working on task forces and projects for the state education office. 

Implications and Lessons Learned 

This study investigated the enduring outcomes of a program built on evidence-based criteria 

for effective professional learning. It validates the potential of blended learning as a vehicle for 

delivering high-quality professional learning with sustained positive effects over time. Building 

on the STREAM curriculum framework, future studies should explore how specific elements of 

professional learning generate the sustained outcomes observed in this study: transformed 

instruction, community building, and leadership development. This research provides a 

foundation to examine the efficacy of blended and online learning in other settings, particularly 

where barriers of distance, expense, or time limit opportunities for traditional professional 

development. Studies could also address challenges experienced in the STREAM project and 

inherent to blended learning. How does a program serving multiple districts and grade levels 
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calibrate the content and delivery of professional learning to accommodate wide variations in 

participants’ mathematical knowledge? How do developers balance respect for teachers’ limited 

time and competing priorities against a commitment to rigorous professional learning?  

 “Three years is not enough!” and “No, it can’t be over!” were two sentiments voiced by 

teachers upon completion of the STREAM project. This research study confirmed that effective 

professional learning need not be “over” – it can produce lasting effects on teacher practice. The 

participants in this study experienced, embraced, and now continue to implement standards-

based mathematics content and evidence-based teaching strategies that engage their students in 

mathematical practices. They developed leadership skills that have visibly improved 

communication and collaboration among mathematics teachers in their districts, and they are 

exemplars for the next generation of mathematics teachers. Positive outcomes such as these call 

for continued study of effective models for teacher professional learning. 
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The strength of collaborative approaches in staff development lies in opportunities for teachers 
to productively work in a positive and healthy environment. This qualitative study examined how 
forming collaborative learning teams based on content knowledge, algebra teacher self-efficacy, 
and teacher preference shaped the interpersonal dynamics of mathematics lesson study teams. 
The results from teacher reflections suggested the team-creation framework encouraged positive 
and productive interpersonal team behaviors. This framework can inform the creation of lesson-
study teams as well as other professional development programs that use collaboration.   
  

For over five decades, public schools have been subjected to increased accountability as state 

and federal governing bodies have become more involved in creating systems to improve the 

outcomes of public education (Spring, 2014). Because of this increase in accountability, many 

schools are implementing a variety of professional development programs (PD) in order to 

enhance teacher learning to impact student achievement. One such PD to enhance teacher 

learning is lesson study (LS). This is a collaborative approach in which teachers engage in a 

process that improves the quality and effectiveness of their teaching (Lewis & Hurd, 2011; 

Isoda, 2015). This involves a small team of teachers who work together to design, observe, 

critique, and redesign lessons. The key to LS is the successful interactions among teachers. If 

learning is interrupted by dysfunctional interpersonal relationships, such as unproductive 

conflict, the fundamental goal of collaborative learning can be diminished (Achinstein, 2002). 

While lesson study teams have been created by campuses or academic subjects, no research 

to date has investigated purposeful formation of lesson study teams. As a result, the following 

research question was investigated: How does the purposeful formation of mathematics lesson 

study teams shape interpersonal team dynamics? For the purpose of this study, a team refers to a 

collection of teachers who have a common learning goal who work interdependently and hold 

each other accountable. On the contrary, a group is a loose collection of teachers who lack the 

specific aforementioned characteristics of a team (DuFour, DuFour & Eaker, 2008).  

Theoretical Framework 

In order to understand how the interaction of individuals within a team influences 

performance, the researchers drew upon Belbin’s (2007) role theory as a useful framework. He 
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explained teams who included members with a wide range of roles performed better than teams 

with less role variety. While nine specific roles were identified, he also espoused that the 

foundation for successful interaction rested on a balance between functional and team roles. 

Functional roles are associated with individuals who possess technical and/or professional 

knowledge. These individuals help focus the team on the assigned task, while team roles are 

associated with team members who exhibit positive interpersonal behaviors. The team role can 

act as a mediator who promotes team cohesion. Ultimately, the premise of Belbin’s (2007) 

theory hinged on the idea of balancing these two roles within a team.   

Prichard and Stanton (1999) reinforce the importance of these roles by describing that both 

task process (functional role) and maintenance skills (team role) are fundamentally important to 

successful team interactions. Task process refers to accomplishing the team’s goal by defining 

the problem, collecting information, and developing a solution. Maintenance skills refers to the 

social or emotional interactions between team members that maintain team processes. Task 

process and maintenance skills are analogous to functional and team roles as articulated by 

Belbin (2007). We contend that team members with higher levels of content knowledge would 

perform the task process (functional) role, while members with high teacher self-efficacy would 

support the maintenance skill (team) role. Both are critical to team performance.   

For the purpose of this study, algebra teacher self-efficacy (Wilkerson et al., 2018) served as 

the team role in order to promote harmony in the team. Teachers with elevated levels of teacher 

self-efficacy are associated with high commitment, confidence, motivation, resilience, and goal 

setting (Bandura, 1993). They are less likely to compare themselves to others which could 

diminish the likelihood for conflict and power struggles. Teachers with content knowledge 

(Prichard & Stanton, 1999) served the functional role as they possess the technical and in-depth 

knowledge of mathematics. Because studies have shown that allowing individuals to select their 

own teams has a positive effect on perceived team experiences (Chapman & Van Auken, 2001), 

this factor was included in the team-creation framework.  

Methods 

Of the 17 teachers who voluntarily participated in this study, 13 had been together the first 

year of a two-year eighth grade mathematics and algebra PD. An additional four teachers were 

added the second year who either worked with or knew one of the existing teachers in the 

program. This program consisted of 99 hours of mathematics instruction (60 summer hours 
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focused on algebra content and 39 hours focused on teaching algebra during the academic year) 

focused on incorporating formative assessment strategies and inquiry approaches to teaching 

eighth grade mathematics and algebra. The teachers used the Lesson Study with Open Approach 

(LSOA) model to facilitate their professional learning (Isoda, 2015).   

The team-creation framework was based on measures of content knowledge, algebra teacher 

self-efficacy, and teacher preference. For content knowledge assessment, algebra teachers 

completed the Teacher Content Knowledge Survey (Tchoshanov, 2011), and eighth grade 

teachers completed the Diagnostic Teacher Assessment for Mathematics and Science 

(Saderholm, Ronau, Brown, & Collins, 2010) for algebraic reasoning in the middle grades. 

Teacher self-efficacy was measured using the Algebra Teacher’s Self-Efficacy Instrument 

(ATSEI) survey (Wilkerson et al., in press), and a teacher preference form was created by the 

authors and given at the beginning of the second week of the summer. This form allowed 

teachers to list individuals with whom they preferred to work, and if necessary, one individual 

whom they believed would inhibit their professional growth in a team setting. This allowed 

space to list someone whom they believed would inhibit their capacity to function within a team. 

There were a total of eight participants who made this request and all were honored; therefore, 

the number of people working with someone identified as a potential conflict was zero.  

The Jenks Natural Breaks Optimization Process (Jenks, 1967) was used for ranking team 

members from the highest Class 4 to the lowest Class 1 for both the mathematics content 

knowledge and algebra teacher self-efficacy.  This created three teams of four and one team of 

five. After examining the last factor of preference, teams were rearranged (See Table 1) so each 

teacher had at least one person they selected while maintaining balance in team and functional 

roles. Pseudonyms were used for the teachers to maintain anonymity. The goal was to achieve as 

much balance as possible using team means to determine the level of each teaming factor.   

Table 1  

Final Teaming of Math Teachers  
  

 Content Knowledge Knowledge Efficacy in 
Algebra 

Personal Teaching Efficacy 
in Algebra 

Number of 
Preference 
Matches 

Number of  
Conflict 
Matches 

 
Jenks 
Class 

Score 
Mean 

Team 
Mean 

Jenks 
Class 

Score 
Mean 

Team 
Mean 

Jenks 
Class 

Score 
Mean 

Team 
Mean   

Team 1    52%   73%   66%   
Aria 4 85%  4 88%  2 56%  No Pref. 0 
Paula 1 8%  2 65%  3 65%  2 0 
Lisa 3 65%  2 70%  3 69%  2 0 
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Randall 2 50%  2 70%  3 70%  2 0 
            
Team 2    62%   72%   57%   
Marie 2 55%  3  77%  2 48%  1 0 
Sharon 2 50%  1 31%  1 37%  1 0 
Blake 4 85%  4 96%  4 78%  2 0 
Chloe 3 58%  3 82%  3 63%  1 0 
            
Team 3    55%   74%   65%   
Elena 4 80%  3 74%  2 57%  1 0 
Juanita 2 40%  2 59%  3 63%  1 0 
Henry 3 60%  4 85%  4 84%  No Pref. 0 
Natasha 2 40%  3 78%  2 54%  1 0 
            
Team 4    47%   68%   63%   
Kamace 3 68%  2 70%  3 68%  2 0 
Ofelia 1 20%  1 23%  1 21%  2 0 
Fatima 2 35%  4 95%  4 92%  1 0 
Deanne 3 60%  3 75%  3 65%  2 0 
Gino 2 50%  3 77%  3 70%  1 0 
        

 
 

Once the teams were created using the team-creation framework, participants conducted a 

round of LSOA as part of the PD that began in the summer. As the teams conducted LSOA, the 

researchers utilized the formation of the teams to gain an understanding of how teachers 

experience their subjective meanings related to professional learning in a social context. A 

phenomenological methodology was used to guide this study (Hesse-Biber, 2017), and data were 

collected through reflective journal entries (Table 2) of 17 secondary public-school teachers. A 

grounded theory coding approach was used to develop themes associated with the research 

question (Charmaz, 2004).  Note, Henry was not available to respond to the September prompt, 

and Juanita was not available to respond to the October prompt thus reducing the number of 

responses to 16 for both months.  

Table 2  

Questions and Dates for Reflective Journal Entries  
Date Reflective Prompt # of Responses 

September Describe how you “get along” with the other teachers in your lesson study 
team. How does this relationship help or hurt your learning?   

16 

October Describe the role you assumed during your work in the lesson study team. 
For example, did you assume the role of a leader, a mediator, math 
specialist, etc.? Explain the process of how members in your team 
developed certain roles.   

16 

 
Findings 

Themes and patterns were developed from the teachers’ reflective journal entries, then initial 

memos were drafted followed by initial coding by assigned categorical codes. This allowed the 

construction of data coded and grouped by general categories of meaning. In response to the 
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research question, the grounded theory process (Charmaz, 2004) was used to reveal two 

predominant themes. As patterns and themes emerged from the reflective journal entries, 

analytical codes were assigned to capture a wider range of meaning related to how teachers 

perceived their interpersonal team dynamics. The reflective journal entries were reviewed until 

theoretical saturation was achieved; thus, no more useful information was obtained from 

reviewing the data. The first theme was positive interpersonal team dynamics and the second 

was an understanding that positive relationships were important to quality collaborative learning.   

Teachers reported experiencing positive interpersonal team dynamics. Out of the 16 

responses, 13 indicated experiencing positive team dynamics with three providing neutral (did 

not express positive or negative dynamics) results. They reported getting along well with other 

members of their team and appreciated the positive interpersonal interactions. This dynamic was 

specifically articulated by Kamace who stated:  

This new lesson study team has a greater personality match than in my previous year’s team 

in which there were a lot of alpha personalities. Given the personalities of my current team, 

we are not all alphas and it generates a greater balance of leadership, peace keeper, manager, 

and support that works more effectively.   

Kamace received the highest score on the algebra teacher self-efficacy survey compared to the 

16 other teachers. This supports the idea that teachers demonstrating high levels of teacher self-

efficacy have positive outlooks, high levels of resilience, and a strong commitment to achieving 

goals (Bandura, 1993). They also believe that skills are acquirable and recover quickly after 

experiencing failures or setbacks. We suggest these qualities have the capacity to act as 

motivating factors when working cooperatively with other teachers and can facilitate team roles 

by promoting team cohesion.  

This teacher’s detailed awareness of team roles and interactions supports the idea that they 

are capable of acting in a role that creates harmony and good relations among members. This 

statement also exemplifies the importance of creating teams that include a diversity of 

personalities. Prichard and Stanton’s (1999) research supports this idea as they concluded that 

the effectiveness of a team will be promoted by the extent to which members correctly recognize 

and adjust themselves to the relative strengths within the team, both in expertise and ability to 

engage in specific team roles. As exemplified in Kamace’s statement, this process of adjustment 

is much easier when there is a balance as opposed to having too many alpha personalities.   
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Although a clear majority of teachers reported experiencing positive team dynamics, team 

four indicated there was some tension. For example, Ofelia stated,  

We have had a slow start. We have a first-year member in the team whom has missed some 

relevant time, and it has impeded our planning time because there are a ton of questions and 

it has prevented us from being further along in our LSOA planning. 

Upon further examination of this team's responses, four out of five noted they “got along” 

with each other, and one indicated a neutral response. All members did, however, express 

concern that communication and a slow start was causing issues. As reinforced by Gino, “We get 

along fine, but communication is a bit lacking.” This stress was also noted by Deanne who 

reported, “I am concerned about the lesson study next month because from what I know...we do 

not have anything done.” When examining the responses from the second reflective prompt, this 

team appeared to have overcome their slow start and were performing well as a team. Gino 

stated, “It started off a little rocky, but it was pretty cool how it all worked out.” This suggests 

the team experienced cohesion and positive team dynamics once the issues of communication 

and procrastination were ameliorated. Tension during team formation is a normal process of 

team development as long as it does not diminish cohesion (Wheelan, 2005).   

The second theme focused on the importance of relationships. Out of 16 responses, 14 

supported this theme, while two reported neutral perspectives. The teachers articulated their 

understanding that positive interpersonal relationships greatly affected the quality of learning in 

a cooperative setting. Chloe stated:  

I get along with the teachers in my lesson study team. I was a little nervous when assigned 

teams because I wanted to have a team with people that I can get along with and have a good 

collaborative experience. I think this helps my learning because I am more open and can talk 

with people I get along with easier. I have seen my students shut down when they are 

working with somebody they don’t know at all or have had a previous disagreement with. I 

think the same concepts would apply with adults.   

Her response was similar to others in that they appreciated the cooperative learning opportunities 

and valued the information gained from peer interactions. They also expressed a certain level of 

confidence in their team’s abilities based on their perceived positive interpersonal dynamics.   

According to Wheelan (2005), as individuals come together in teams, they bring with them a 

cultural blueprint which informs their values, beliefs, and behavioral norms. When the members 
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have similar blueprints, they initially have higher levels of interaction, cooperation, and 

productivity because they have similar beliefs and attitudes that can contribute to interpersonal 

attraction/cohesion between people. When newly formed teams have a large amount of variety in 

their cultural background, they could have more intensity during the conflict phase of team 

development as they work to develop common values and beliefs. The expression of nervousness 

about their assigned team could be an expression of anxiety about developing cohesion with 

people who have different blueprints. This supports our team-creation framework which 

provides teachers some choice in their teaming assignments. While it was clearly stated that 

choice would be limited (priority was placed on content knowledge and algebra teacher self-

efficacy), every participant was placed in a team that included one or two of their preferences. 

The researchers also honored any requests made by a participant to avoid being teamed with a 

specific individual in order to promote cohesion.  

Implications 

The results of this study thus far demonstrate the team-creation framework, centered on 

content knowledge, algebra teacher self-efficacy, and preference, can positively shape the 

perceptions of teachers as they participate in collaborative PD. This suggests that teachers 

competent in their content knowledge could be performing their functional role, and efficacious 

teachers could be performing their team role by facilitating diplomatic interactions. This 

indicates that mixing roles using the Jenks Natural Breaks Optimization Process (Jenks, 1967), 

as well as limited teacher preference, supports Belbin's (2007) role theory. As more data are 

collected, these implications will be reexamined.    

The results of this study were not designed to be generalized; however, the team-creation 

framework could be deductively examined using quantitative methods. Future research could 

examine correlations between the three factors and their outcomes on teacher staff development 

centered on lesson study. This has the potential to greatly impact the field of professional staff 

development not only in mathematics, but also impact many other content areas as well. As state 

and federal accountability reforms continue to increase, equipping teachers and administrators to 

effectively learn and improve will be critical to student, teacher, and ultimately school success. 

Future studies could also include how the attitudes and knowledge of students in grades K-12 

impact group productivity.  
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The National Council of Teachers of Mathematics (NCTM, 2000, 2014) advocates a strong, 
engaging curriculum for all students facilitated by teachers engaged in appropriate instruction 
and planning. One common thread for supporting teachers is providing appropriate professional 
development (PD). This study examined the impact of a three-day PD on inservice teachers’ 
understanding and implementation of the Mathematical Teaching Practices (MTPs; NCTM, 
2014). Daily reflections, a targeted vignette activity, and a Q-sort activity were utilized in the 
PD. Results show participants were able to identify specific MTPs to target in an action plan to 
reflect on their practices. 
 

The National Council of Teachers of Mathematics (NCTM; 2000, 2014) advocates a strong, 

engaging mathematics curriculum for all students in K-12 facilitated by teachers engaged in 

appropriate mathematical instruction and planning. NCTM furthers notes that the classroom 

teacher is the key element in providing the type of learning experiences needed for high-level 

achievement by all students in mathematics. Furthermore, many leaders in mathematics 

education contend that there is specific knowledge needed to teach mathematics effectively that 

involves mathematics content, mathematical content pedagogy, and other areas (Ball, Thames, & 

Phelps, 2008; Shulman, 1986). The Mathematical Teaching Practices (MTPs) as identified by 

NCTM’s Principles to Action (2014) support educators in their understanding and 

implementation of this specific knowledge. Recognizing the critical role of teachers, it is 

imperative that appropriate professional development (PD) is provided so that they can then 

provide the best instruction and curriculum possible for K-12 students.  

Literature Review 

According to research conducted by Stigler and Hiebert (2009), a large percentage of 

mathematics teachers are aware of reforms advocated by NCTM and other organizations and 

claim to have implemented them into their classrooms. However, the Third International 

Mathematics and Science Study (TIMSS) and the 1999 TIMSS-Repeat reveal through video 

analysis from numerous American mathematics classes that the suggested reforms are not 
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present. Even though mathematics teachers have intentions to adopt the latest research and 

reform movements into their classrooms, they find it a struggle, and often misinterpret reform by 

merely changing surface features (Knapp & Sowder, 2004; Lewis, 2014; Stigler & Hiebert, 

2009). It is therefore important to make connections between theory and practice in PD (Loucks-

Horsley, Stiles, Mundry, Love, & Hewson, 2010).  

Teachers are the key to changing the way students learn mathematics (Dana & Yendol-Silva, 

2003; Darling-Hammond, 1998). In addition to what and how mathematics teachers teach, it also 

matters what kind of PD they participate in and the support that follows (National Research 

Council, 2001). According to Professional Standards for Teaching Mathematics (NCTM, 1991), 

an essential factor in teachers’ PD is the degree to which they “reflect on learning and teaching 

individually and with colleagues” (p. 168). PD is improved with continuous program monitoring, 

combining strategies to address diverse needs, and building cultures that sustain learning 

(Loucks-Horsley et al., 2010). Furthermore, PD is strengthened when using teaching-analysis 

tasks. Specifically, strengthening teachers’ mathematical knowledge and fostering gradual 

change in classroom instruction are important steps to increasing and supporting student learning 

opportunities (Borko, Jacobs, Koellner, & Swackhamer, 2015).  

One such teaching-analysis task is a personal exploration and ranking of instructional 

practices using a Q-sort (Stephenson, 1935). Recently, Q-sorts have been utilized to explore 

preschool teachers’ endorsement of instructional practices (Koutsoftas, Dubasik, & Moss, 2017) 

and in-service mathematics teachers’ ratings of MTPs as least characteristic of their 

teaching/least important to most characteristic of their teaching/most important (Franz, Wilburne, 

Wagstaff, & Polly, 2017; Wilburne, Franz, & Polly, 2016). Another such task includes utilizing 

vignettes to analyze classroom cases. Multiple studies utilize vignettes in PD exercises with 

inservice teachers (Ambler, 2012; Angelides & Gibbs, 2006; Jeffries & Maeder, 2005; Jochums 

& Pershey, 1993). Engaging in a targeted vignette activity sequence can enhance and direct 

attention to a specific practice, such as the MTPs. 

To assess the impact of PD on inservice mathematics teachers, the researchers designed a 

Mathematics Teachers Academy (MTA) consisting of a three-day summer training with 

academic-year follow-up. The MTA had a focus on algebraic thinking in Grades 5-12; formative 

assessment and the MTPs were used to support that focus. The PD was designed to draw upon 

teachers’ interests and expertise in algebra, while using knowledge of the MTPs as a lens for 
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reflection. The following research questions were crafted to examine the impact of the MTA:  

• What effects does the PD have on mathematics teacher beliefs about and use of MTPs? 

• What effects does the PD have on algebra teacher efficacy? 

• In what ways does the use of vignettes contribute to teacher understanding of MTPs? 

Methodology 

Participants 

Thirty-nine inservice teachers, with an average teaching experience of 9.72 years, 

participated in the MTA. Of these 39 participants, 23 were middle school teachers, 15 were high 

school teachers, and one participant did not report a specific grade level. In conjunction with the 

PD activities completed by these participants, the researchers collected data from several sources 

related to MTA activities.  

Instruments and Data Collection 

Data collection included three qualitative and two quantitative instruments. Participants 

completed an Algebra Teacher Self-Efficacy Instrument (ATSEI; Wilkerson et al., Accepted), 

the Teacher Action Q-sort (Franz et al., 2017), the Vignette Activity Sequence (VAS; Wilkerson, 

Kerschen, & Shelton, 2018), daily reflections, and action plans. 

Prior to the MTA, participants completed the ATSEI, a 36-item instrument with 28 items 

related to functions and eight items related to technology. This instrument has been used with 

inservice mathematics teachers and has been tested for validity and reliability with that group. 

Efficacy on the ATSEI is self-reported and measured with a Likert scale of 1-6, with 6 being a 

higher efficacy rating. For more information about the ATSEI, see Wilkerson et al. (Accepted).  

The three-day MTA began with an overview of Principles to Action (NCTM, 2014), 

specifically the MTPs. Participants also completed the Teacher Action Q-sort prior to MTA 

sessions, ranking specific teacher actions related to the MTPs from least to most characteristic of 

their teaching. The MTA included activities and formative assessments designed to support 

algebraic thinking. Technology resources were also shared and modeled, with graphing 

calculators, including Desmos, and Calculator-Based Rangers highlighted.  

Each day, participants began with a whole-group activity engaging them in a mathematical 

problem that also allowed for discussions about the MTPs. Following the opening session, 

participants went to break-out sessions according to their grade band. Teachers of Grades 5-8 

and teachers of Grades 9-12 were grouped separately; however, eighth grade Algebra I teachers 
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could choose to work with either group. Participants attended at least one daily session focused 

on the use of a manipulative, such as algebra tiles, and one session on technology to support 

algebraic thinking. One session in the MTA included a Vignette Activity Sequence (VAS), in 

which teachers analyzed a vignette targeting three of the MTPs: Use and connect mathematical 

representations (MTP #3), Pose purposeful questions (MTP #5), and Elicit and use evidence of 

student thinking (MTP #8). As part of the VAS, participants completed a vignette activity 

recording sheet, providing responses about the MTPs in the vignette, making connections to their 

own teaching practices. For more information about the VAS, see Wilkerson et al., 2018. 

At the close of each day, there was a whole-group meeting where participants engaged in a 

new, additional formative assessment. They also worked on setting goals as part of their action 

plans related to incorporating MTPs as part of their own teaching practices. The action plans 

were developed by the researchers and were based on SMART goals. Participants identified two 

to three Specific goals, how they would be Measured, Activities or steps to take to accomplish 

the goals, list the Resources and/or who was Responsible to accomplish aspects of the goals, and 

a Timeline for achieving the goals. Further, they were to describe potential barriers and how they 

might share their goals and results with administrators and other colleagues. At this time, 

participants completed a daily reflection consisting of a Likert scale from 1-5 to evaluate 

usefulness and relevance of each session attended that day. They were also asked to indicate (1) 

a personal goal based on experiences in sessions that day, (2) what they would take back and 

implement in their classrooms, (3) what the researchers could do to improve the experiences of 

the participants, and (4) add any additional questions or comments. 

Analysis 

The researchers employed a mixed methods approach using the five data sources to analyze 

the impact of the MTA. Analysis included an independent samples t-test of the ATSEI responses, 

analysis of Q-sort data, and axial coding of participants’ VAS recording sheet, daily reflections, 

and action plans. The qualitative data collected in the study was coded, organized into themes, 

and triangulated with multiple investigators and the previously described data sources in order to 

corroborate the evidence based on the literature (Creswell, 2013). 

Findings 

  During the MTA, teachers were able to reflect daily on the PD activities and how they 

related to the MTPs. Results are shared in the following sections based on the research questions.  
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What effects does the PD have on mathematics teacher beliefs about and use of MTPs? 

Initial findings indicate that participants were beginning to make sense of the MTPs and 

examining ways they could explicitly target them in their own practice. This was found in 

multiple data sources, including the daily reflections, action plans, and Q-sort analyses. Analysis 

of the daily reflections revealed three emerging MTPs focused on by participants: Implement 

tasks that promote reasoning and problem solving (MTP #2), Facilitate meaning mathematical 

discourse (MTP #4), and Support productive struggle in learning mathematics (MTP #7).  

Findings indicated all but one action plan had participants who identified goals focused on 

the MTPs. Some also indicated specific student mathematical practices as well. Most participants 

developed goals around four of the MTPs: Implement tasks that promote reasoning and problem 

solving (MTP #2); Use and connect mathematical representations (MTP #3); Facilitate 

meaningful mathematical discourse (MTP #4); and Elicit and use evidence of student thinking 

(MTP #8). Coding also revealed that many of the goals were related to professionalism, real-

world problem solving, and use of technology. Later in the academic year, the action plans will 

be revisited so that participants can make decisions regarding revising their goals or establish 

new ones. 

The Q-sort required participants to sort specific teaching actions from what was least 

characteristic of their teaching to most characteristic. This important reflective activity caused 

them to consider what they wanted their actions to be in contrast with what their actions truly 

were. The Q-sort revealed that many participants found Facilitate meaningful mathematical 

discourse (MTP #4) to be least characteristic of their teaching, while Support productive struggle 

in learning mathematics (MTP #7) was most characteristic of their teaching. This seems to align 

with the results from the goals set by participants in their action plans. The Q-sort activity will be 

implemented again in the next PD session in order to examine any changes or shifts in focus. 

What effects does the PD have on Algebra teacher efficacy?  

Results from the ATSEI survey revealed that participants self-reported higher efficacy levels 

for what they believed they understood about algebra compared to what they felt they could help 

students understand. Participants reported the lowest knowledge and teaching efficacy ratings for 

the four question pairs related to technology with an average rating of 2.91 on a scale of 1-6. The 

researchers plan to address the lowest scoring items in follow-up PD sessions and will 

readminister the ATSEI to measure any potential impact.  
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In what ways does the use of vignettes contribute to teacher understanding of MTPs?  

The vignette targeted three specific MTPs: Use and connect mathematical representations 

(MTP #3), Pose purposeful questions (MTP #5), and Elicit and use evidence of student thinking 

(MTP #8). Seventy-nine percent of participants identified MTP #5 as being modeled in the 

vignette. The second most identified MTP was Implement tasks that promote reasoning and 

problem solving (MTP #2), with 66% of the participants selecting this practice. This was not one 

of the three MTPs targeted by the creators of the vignette. Furthermore, limited evidence was 

provided to support the connection between the vignette and this particular practice. However, 

participants who did attempt to provide evidence gave surface-level justifications. One example 

of this was when participants reported “Tank task assigned to group” as evidence for MTP #2 

with little explanation on why or how it promotes reasoning and problem solving. This is similar 

to responses that participants gave in their daily evaluations. Comments such as, “I intend to use 

the activities that promote critical thinking and discussions” were often included but were 

lacking specific actions or connections to promoting reasoning and problem solving. 

Many teachers indicated there was power in completing the VAS because it allowed them to 

better understand how important it is to ask good questions and let students struggle to find their 

own answers. One participant indicated the “activity is rich with new learning as well as review. 

This one activity covers: solution to system, domain and range, rate of change, y and x intercepts 

with real world meaning, and different representations.” Several participants also shared that the 

vignette allowed them to notice valuable steps they often skip in their classroom practices, such 

as checking for understanding by asking peers to restate one another’s justification about 

reasonable solutions, reflecting on student learning, and allowing students to explore in order to 

fully understand a problem. While it was evident in the analysis of the vignette activity that 

participants were able to make rich connections from the activities and actions in the vignette to 

their own practices, due to their limited experiences with MTPs, they struggled to give evidence 

to support the practices they identified in the vignette. 

Implications and Future Direction 

Participants will engage in follow-up PD sessions mid-year, at the end of the school year, and 

the following summer. Additional data will be collected at those times in order to determine the 

impact of the MTA on teachers’ understanding and use of MTPs. Follow-up PD sessions will be 

designed to address findings thus far. These sessions will include an additional in-depth 
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examining of particular MTPs through vignettes, engaging in use of specific technology for 

teaching and learning mathematics, and reflecting on initial proposed goals and progress toward 

those. In the future, the researchers would like to include observation of participants teaching 

during the school year in order to examine more closely the implementation aspect of the MTPs 

as well as progress toward goals.  
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Undergraduates enrolled in a mathematics teacher education scholarship program are required 
to conduct action research as a capstone project. This process elevates teacher candidates from 
the role of student to a classroom professional. In addition, faculty advisors of action research 
projects benefit as they work with scholars to research classroom issues and find ways to 
improve their practice. The purpose of this manuscript is to highlight the design of the ACTION 
program with the intent to influence others to enact a program like it at their institutions. 

 
Program Description and Theoretical Framework 

 The preparation of a mathematics teacher needs to include an appropriate mix of 

mathematics content, learning psychology, pedagogy (including pedagogical content 

knowledge), and field experiences (Association of Mathematics Teacher Educators [AMTE], 

2017).  While there is no single method to prepare a mathematics teacher, these components are 

typical for teacher education programs in the country. In the summer of 2009, Bowling Green 

State University in Ohio instituted a program to enhance middle and high school teacher 

preparation in mathematics and science. Funding for student scholarships was secured through a 

grant from Choose Ohio First, administered by the Ohio Board of Higher Education, and the 

university provided cost sharing to establish the Science and Math Education in ACTION 

program (often referred to as simply “ACTION”). The goal was to accept approximately 25-30 

students into a cohort each year, building the program to a maximum of approximately 110 

students across four years. The lead author is the director of the ACTION program, and the 

second author has served as an ACTION advisor for nine students. We focus on one facet of the 

program—undergraduate research—and its connections to preparing successful mathematics 

teachers.   

 This competitive scholarship program requires an application process that consists of high 

school transcripts, ACT scores, and a letter of recommendation, as well as answering several 

essay questions and participating in an online interview. At this time, five cohorts have graduated 

and the program has met its maximum number of accepted students. Thus, we feel it is important 

to share broadly the design and successes of the program in relation to preparing future Ohio 

mathematics and science teachers and, in particular, to spotlight one component of the ACTION 
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program—classroom action research conducted by teacher candidates in fulfillment of a 

capstone project.  

 Most agree that action research involves the study of a problem stemming from everyday 

lived experiences in the classroom and seeks to understand and/or improve upon this problem 

(Johnson, 2012). Benefits of teachers doing action research are numerous, including the 

generation of knowledge that can be applied to one’s own classroom and the promotion of 

reflection on practice (Hine, 2013). In addition, studies on the effects of having undergraduates 

conduct pure research in the biological, physical, and mathematical sciences indicate that 

students learn how to think like a scientist and gain research as well as communication skills 

(Seymour, Hunter, Laursen, & Deantoni, 2004). Action research allows undergraduate teacher 

candidates to transition from learners who are dependent on instructors to independent 

professionals, thereby empowering them to make significant changes in their own classrooms 

(Kane, 2013). Undergraduates conducting action research learn to identify classroom problems, 

determine a way to measure results, as well as “to evaluate change and to reflect on methods 

most relevant to effective teaching” (Anderson, Nelson, & Waite, 2014, p. 5).  Many have 

argued that the inclusion of action research projects in a teacher preparation program is essential 

for helping new teachers to identify and address issues that arise in their classrooms (Hine, 

2013). 

 ACTION scholars engage in the same mathematics and mathematics education coursework 

and field experiences as non-ACTION students; but, ACTION scholars have several additional 

research and internship dimensions, as shown in Figure 1.   

 
 

Figure 1.  Components of the Science and Math Education in ACTION Program 
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We outline the main components of the ACTION program in the following sections.  

Year Zero: Summer Bridge Program 

 Prior to their first year of college, students participate in a residential, four-week, Summer 

Bridge Program to introduce them to the professors and content areas they will be studying for 

the next four years. Students engage in workshops, mini-courses, and laboratory experiences 

with a variety of instructors, most of which are university science, mathematics, science 

education, and mathematics education professors.   

Year One: Small Group Bench Research Projects 

 In the first year of college, undergraduates work in small groups (ordinarily 4-6 students per 

team) with a faculty member from one of the sciences or mathematics, conducting original 

research on a topic of the professor’s choice. Undergraduates are generally surprised by this 

experience when conducting research alongside a university faculty member (i.e., bench 

research). They have reported being used to high school lab experiences in which the results of 

the experiments are already known and/or the investigation lacks an authentic feel of seeking to 

understand the world. Similarly, they are familiar with solving mathematics problems that have 

solutions presented in the back of the book. In research conducted at college and university 

campuses, there are no cookbook-style lab experiences or known solutions to the research 

questions and complex problems. Thus, students experience bench research in the ACTION 

program as they hypothesize, collect and analyze data, and draw conclusions from the results.  

This initial research project creates a baseline set of experiences for students’ second year as 

novice mathematics and science researchers.  

Year Two: Community-Based Internships 

 Undergraduates are placed in a community setting in their second year for an internship.  

Placements include local businesses and agencies where science and mathematics are used on the 

job every day. Local businesses and agencies are delighted to host university students, as they 

see benefits both to the students and to their organizations. Furthermore, they are also anxious to 

collaborate with K-12 mathematics and science teachers in ways that can help make mathematics 

and science seem connected to their students’ everyday lives, which might include guest 

speakers, after school club sponsorships, and field trips. The internships are designed to help 

students answer the question, “Why would anyone ever need to know this?” After engaging in 

pure mathematics (or science) research for a year then interning in the community for another 
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year, students are developmentally ready to think about what it means for a teacher to be a 

researcher in his/her own classroom.   

Year Three: Defining a Problem and Writing a Literature Review 

 ACTION students are taught how to conduct action research in the third year. The action 

research is conducted the following year during their student teaching experience as a way to 

explore a topic of interest, collect data on it, and draw a logical conclusion aiming to improve 

their instruction. This third-year experience includes a yearlong course that meets monthly in 

which they research a topic and write a proposal for a classroom study, much like a professional 

learning community or lesson study in K-12 school environments. The course instruction focuses 

on the meaning of action research and how a teacher might act as a researcher in his/her own 

classroom. Students analyze research studies published in a variety of settings and learn to 

critique the content in terms of research design and validity of the conclusions drawn by the 

authors. They select a topic of interest and work individually with a faculty mentor to determine 

a problem. Next, they explore this area through a review of practitioner and research-based 

literature and write a paper describing work they intend to conduct during their student teaching 

experience. Faculty mentors assess their students’ proposals and give feedback to them so they 

prepare for implementation the following year.   

Year Four: Conducting Action Research 

 In their final year, ACTION scholars have monthly class sessions in the fall semester to 

closely examine appropriate qualitative and quantitative research methods for their action 

research. During this time, students also work individually with faculty advisors to learn about 

qualitative analysis approaches such as thematic analysis (Hatch, 2002) and survey analysis, as 

well as quantitative approaches including t-tests and chi-square analyses. The work in this course 

is similar to what most teachers experience in a graduate research methods class, as teacher 

candidates are challenged beyond the ordinary boundaries of an undergraduate education. 

Students finalize their proposals and then, during student teaching, conduct their action research 

studies, analyze their data, and write up the results in a final capstone paper.   

 Faculty advisors assess final capstone research papers. The intent of this paper is to use the 

contents to generate publications and presentations as well as to lay the groundwork for future 

study when new teacher begins his/her career. At a culminating senior year event, each ACTION 

student develops a PowerPoint and presents his/her research to an audience of peers, faculty 
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members, and parents. This four-year experience leads to high quality action research, evaluated 

by practitioners and researchers at the university. The third- and fourth-year process mirrors an 

important facet of teachers’ professional work: explore an issue in the classroom and seek to 

understand it and/or to solve the problem. We now turn our attention to what undergraduates and 

faculty mentors gain from the action research process in the program, as described through the 

eyes of a faculty mentor in mathematics education.  

Findings and Learning Experiences 

Over the past seven years, the second author served as advisor for nine ACTION students 

and will describe his experiences in this section. Many ACTION students have moved their 

undergraduate action research forward as presentations at state-level conferences or even 

published it in top-tier journals (e.g., Mathematics Teaching in the Middle School). The focus in 

this section is to provide first-hand experiences of an advisor—what I learned from it and what 

students have learned, as shared in their words. 

Serving as an ACTION advisor provided several learning opportunities for me. One example 

is that ACTION students and I have learned more about the philosophy and methodological 

process for action research. Prior to serving as an ACTION advisor, I was not aware of action 

research process and its utility for practitioners. Numerous sessions have been offered to educate 

ACTION advisors about action research, including its limitations and affordances as a research 

approach. Action research has potential to inform mathematics educators’ practice. For example, 

I personally engaged in action research during a mathematics education course for first-year 

secondary preservice teachers—collecting and analyzing data with the ultimate goal of enacting 

high quality instruction. Many ACTION advisees have shared that they continue to use action 

research as practicing teachers as a mechanism to improve their instructional practices and 

students’ outcomes.  

A second learning experience is that I have a rich opportunity to develop positive 

relationships with students and vice versa. Building professional relationships with students has 

been discussed as a key variable in retaining preservice and inservice teachers and empowering 

them for their career (Guarino, Santibanez, & Daley, 2006). I have become a better academic 

writer, reviewer of academic writing, and writing coach for others as a result of interacting with 

my students. Faculty members review multiple drafts of research papers that include sections 

such as introduction, literature review, methodology, results, and discussion. Students typically 
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experience the same growth while writing their action research papers. A former ACTION 

advisee shared, “Because of the ACTION research project, I can better present my ideas in a 

more academic style of writing and communicate more effectively to the mathematics education 

field – including my peers who are teachers.” Personally, I am better able to sense coherence and 

flow within students’ work and my own research manuscripts, and both lead to papers and 

presentation that are often submitted for peer review. As such, the professional relationships 

developed with my students help me to become a better writer and to more effectively critique 

student work. 

A third learning experience is the opportunity to co-explore important mathematics education 

questions posed in everyday practice with ACTION students. It is not plausible to investigate 

everything that is interesting, but working with ACTION students gives me the chance to be a 

part of the process and learn alongside them while they do their work. Former students’ action 

research has explored numerous topics including but not limited to promoting students’ 

representation use, improving problem-solving performance, and enacting classroom norms for 

deep, meaningful mathematics learning. Through these projects, I have become more 

knowledgeable of diverse research areas and outcomes from action research that feeds back into 

practice and related literature.  

A fourth learning experience is dealing with failure alongside students. Mathematics 

education researchers know the challenges of a rejected manuscript or instruction that misses the 

mark. More specifically, action research may be problematic and not succeed as hoped and that 

happens often (Johnston, 2012). For instance, one ACTION scholar who aimed to change 

classroom norms and explore students’ outcomes noticed that high school students were quite 

resistant to any changes. As much as she persisted, students perceived the change in norms 

during the middle of the academic year as not appropriate. There were many reasons for this; 

however, one was a lack of a unified vision between the ACTION scholar (i.e., student teacher) 

and her cooperating mentor teacher. While we discussed that her action research might not have 

been as successful as she hoped, we learned how important it is to present a shared vision with 

any co-teachers. Thus, her action research taught me (and her) to look for ways to grow and 

learn. This is a valuable lesson because effectively executed research generally leads to learning 

something, even when the outcomes are not desirable (Cresswell, 2012). 
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Conclusion/Future Research 

As the process of preparing mathematics teachers for the future continues to be researched 

and improved, it is essential that educators consider the value of action research to enhance the 

undergraduate experience. Undergraduate teacher candidates need to learn to be teacher 

researchers. We have shown that there are many opportunities for university faculty to learn with 

students through their implementation of action research projects. Graduates of the program 

frequently report that the hiring process was facilitated by these research experiences, as they can 

discuss the impact of action research in job interviews. Similarly, principals report on the 

positive impressions made by ACTION scholars in the interviewing process, as graduates can 

describe classroom instructional issues and how they carefully studied their teaching practices to 

establish goals for improvement. Faculty advisors have also benefitted from this component of 

the ACTION program and find it exciting to be a part of the action research process. More 

research on the specific impacts of the capstone project on both the faculty advisors and the long-

term development of teachers is yet to be conducted since the program is relatively new and 

graduates of ACTION have taught fewer than five years. However, we know that ACTION 

graduates’ familiarity and experience with action research makes them highly desirable to school 

districts, as the ACTION program continues to promote students’ growth as reflective 

practitioners. If a goal of educators is to improve K-12 students’ performance in schools then 

teachers must continue to systematically determine ways to improve their practice, and action 

research is fundamental in the process of continual improvement. 

 
References 

 
Anderson, G. T., Nelson, J. K., & Waite. B. (2014).  Reflection on student action research. 

Voices of Practitioners, 9(1), 2-5. Retrieved from 
https://www.naeyc.org/files/naeyc/images/voices/6_Fierro%26ProbstCommentary_Anderson
%20v9_1.pdf 

Association of Mathematics Teacher Educators.  (2017).  Standards for preparing teachers of 
mathematics.  Available online at amte.net/standards. 

Cresswell, J. (2012). Educational research: Planning, conducting, and evaluating quantitative 
and qualitative research. Boston, MA: Pearson. 

Guarino, C., Santibanez, L., & Daley, G. (2006). Teacher recruitment and retention: A review of 
the recent empirical literature. Review of Education Research, 76(2), 173-208.  

Hatch, J. A. (2002). Doing qualitative research in education settings. State University of New 
York Press: Albany, NY.  

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 167



Hine, G. (2013). The importance of action research in teacher education programs. In Special 
issue: Teaching and learning in higher education: Western Australia's TL Forum. Issues in 
Educational Research, 23(2), 151-163.  

Johnson, A.P. (2012). A short guide to action research (4e).  Boston, MA: Pearson Publishing. 
Kane, R. G. (2013). Teacher action research and student voice: Making sense of learning in 

secondary school.  Sage Journals, 12(1), 52-57. Retrieved from 
http://journals.sagepub.com/doi/full/10.1177/1476750313515282 

Seymour, E., Hunter, A.B., Laursen, S.L, & Deantoni, T. (2004). Establishing the benefits of 
research experiences for undergraduates in the sciences: First findings from a three-year 
study. Science Education, 88, 493-534. 

 

Proceedings of the 45th Annual Meeting of the Research Council on Mathematics Learning 2018 168



PROGRAMMATIC EFFECTS ON HIGH STAKES MEASURES IN SECONDARY 
MATH TEACHER PREPARATION 

 
Jeremy Zelkowski Jim Gleason 

The University of Alabama The University of Alabama 
jzelkowski@ua.edu  jgleason@ua.edu  

 
This study examines the impact of program design, coursework, and specific assignments on 
high stakes measures that hold most programs accountable (e.g. Praxis II, edTPA, state/national 
standards). Our preliminary research question for this paper is: (1) What are the more highly 
correlated program components related to successful high stakes outcomes for teacher 
candidates? Initial findings indicate grades in advanced perspective mathematics courses and 
classroom observation scores are very important at successful completion of high stakes 
measures. Early interventions for lesser prepared teacher candidates in freshman/sophomore 
years are warranted. 
 

An important component of a strong K-12 education system is a well-qualified, well-

prepared classroom teacher. However, there is a critical shortage of secondary mathematics) 

teachers (SEMA) in many states and regions of the United States, pronounced in some areas for 

about two decades while other regions more recently (U.S. Department of Education, 2016). A 

distinct issue is bound to move this critical shortage to a more grave and dangerous situation. 

This situation threatens the future of many K-12 students’ futures and the ability of schools to 

functionally serve society well. Many states under political and public pressure have increased 

the standards and requirements to enter the teaching profession by raising the cut scores on the 

Praxis II Mathematics Exam and instituting a newer high stakes measure, the Educational 

Teaching Portfolio Assessment (edTPA, 2017; ETS, 2017). Given this teacher shortage and rise 

in professional qualifying exams, it is imperative that SEMA teacher education programs (TEPs) 

reduce attrition and virtually eliminate failures on qualifying professional exams such as Praxis 

II Mathematics and the edTPA professional portfolio, with strong preparation and commitments 

to producing well-prepared first year teachers of mathematics. The focus of this ongoing study is 

to examine the impact of aligning a SEMA TEP as close as possible to the Conference Board of 

the Mathematical Sciences’ Mathematics Education of Teachers II (CBMS MET II) 

recommendations of coursework, as well as structuring a strategic sequence of coursework 

which adheres to the recent release of the Association of Mathematics Teacher Educators’ 

(AMTE) Standards for Preparing Teachers of Mathematics (SPTM) (CBMS, 2012; AMTE, 

2017). In this early paper, we present our initial evaluation of one research question. We also 
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note, the vision of this work is that teacher candidates are well-prepared first year teachers, and 

that high stakes outcome measures (professional licensure exams) should be a formality for 

teacher candidates rather than test prep. 

Related Literature 

Conference Board of the Mathematical Sciences 

 The CBMS is the umbrella organization comprised of 16 professional societies whose primary 

objectives include the improvement and gain of knowledge in the mathematical sciences. These 

professional groups work hand-in-hand to promote advanced research, improve educational 

outcomes in mathematics, and expand how mathematics can be used more effectively to improve 

the human experience. In 2001, these 16 organizations published the Mathematics Education of 

Teachers (MET I) primarily to open the discussion of the preparation of mathematics teachers 

and present the importance of mathematicians and statisticians in this preparation pathway. 

Entering the 21st century, coherent specific visions for the preparation of mathematics teachers 

was isolate to teacher preparation institutions. The role of mathematicians and statisticians in 

teacher education, particularly that of SEMA teacher education, is longstanding and extremely 

influential (or not) in how future teachers will instruct their students. Given the decade of 

research, experience, and knowledge since the MET I, the CBMS published the MET II to 

reiterate and improve the themes from MET I. We focus specifically on the recommendations of 

the MET II as it pertains to coursework, program design, and well-qualified faculty who prepare 

teacher candidates for the profession they seek to enter. 

In the early 1980s, unproductive beliefs (a.k.a. mindsets) about the teaching and learning of 

mathematics began to be documented by education researchers (CBMS, 2001; Stigler & Hiebert, 

1999). These unproductive beliefs were recently revisited in the National Council of Teachers of 

Mathematics Principles to Actions publication (NCTM, 2014). The sheer importance that content 

area professionals be well-versed in pedagogical research and have the ability to engage teacher 

candidates in high quality mathematical learning experiences as opposed to a single pedagogical 

method historically dominant; direct instruction (CBMS, 2012). Since the release of the MET I at 

the turn of the century, improvements have been made within mathematics/statistics departments 

yet we are a long way from the ideal as a nation. These longstanding traditions in the U.S. had a 

profound effect on many college-aged students having fixed mindsets and beliefs about teaching 

and learning mathematics because of how they are/were taught mathematics in college. Moving 
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from learning only how to do procedures to earn high grades, has moved slowly but positively, 

towards learning how, why, and when to do procedures through various strategies. 

To learn such mathematics at a deep level, the CBMS MET II recommended specific 

mathematics courses and content a teacher candidate should learn under the pedagogical 

practices that goes well beyond how to do procedures and focus on the development of deep 

understandings of the mathematics they will teach from an advanced standpoint. The 

recommendation of three mathematics courses as part of the mathematics major specifically 

designed to do such for future teachers, as well as confirming the sequence of mathematics 

pedagogical methods courses that the AMTE’s SMTP recommends. 

Association of Mathematics Teacher Educators 

The AMTE’s Standards for Preparing Teachers of Mathematics (2017) extended the CBMS 

MET2 recommendations to be more standards driven and strategically outlined successful 

program design and coursework that provides teacher candidates the ability to be well-prepared 

beginning teachers as opposed to just barely qualified. An undergraduate major in mathematics 

that includes statistics, three specifically designed mathematics content knowledge courses from 

an advanced standpoint that builds the ability to for depth of the mathematics teacher candidates 

will teach. Moreover, three specific mathematics education methods courses extends from two to 

three courses, the CBMS MET2 recommendation. The AMTE is clear, the professional 

knowledge and coursework in other professional fields are much more aligned than secondary 

mathematics teacher preparation programs. The AMTE (2017, p 133) states, 

“a degree in electrical engineering required 49 credit hours in coursework specific to 
electrical engineering, 31 credit hours of supporting content courses (mathematics and 
physics), and 15 credit hours in general principles of engineering. In contrast, a degree 
in secondary mathematics education at this university could include as few as 22 credit 
hours specific to mathematics education (which also includes a student-teaching 
experience), with 42 credit hours in mathematics courses taken by all mathematics 
majors and 15 credit hours in education courses taken by candidates from all teaching 
fields. Clearly, the balance of coursework in mathematics teacher preparation is out of 
alignment with other professional preparation programs. Students in secondary 
mathematics education programs need and deserve coursework to specifically prepare 
them for success in their field of study, including mathematics-specific methods 
courses and mathematics content courses specific to teaching as well as meaningful 
clinical experiences in secondary mathematics classrooms overseen by supervisors who 
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have expertise in secondary mathematics across the grades they will be certified to 
teach;…”. 

Given the overwhelming literature in mathematics teacher education regarding appropriate 

coursework and structural design, the field needs an evidenced-based model of the impact of 

these commitments on the high stakes outcome measures of programs and teacher candidates. 

Method 

Present Study Program Design 

The University of Alabama committed in 2009 to three successive mathematics methods 

courses before student teaching (only two prior to 2009) for both traditional certification teacher 

candidates as well as alternative certification master’s student with a bachelor’s degree. At the 

time, one mathematics course specifically designed for SEMA teacher candidates existed 

(geometry). In 2012, a second mathematics content course began through a commitment of the 

mathematics department to improve the mathematical content knowledge of SEMA TCs. These 

two courses fit the recommendations of the CBMS and AMTE focusing on advanced algebraic 

connections and transformational geometry/trigonometry from advanced standpoints.  

Teacher candidates navigate this coursework in a sequenced designed, two-year cohort 

model. In Semester 1 (fall junior year), TCs complete nine credit hours of coursework specific to 

mathematics education: advanced algebraic connections, technology methods course for 

mathematics, and an introduction to secondary education for mathematics students. TCs 

generally are enrolled in an educational psychology and foundations course, as well as an 

additional mathematics course as part of the mathematics major. In Semester 2, TCs complete 

the second mathematics methods course on curriculum, lesson design and task development, as 

well as the second advanced perspective mathematics course focused on geometry/trigonometry. 

TCs are also enrolled in an additional general education course and one or two additional 

mathematics courses in the mathematics major. In Semester 3, a capstone mathematics methods 

course focuses on long-term unit planning and the sequential building of student learning, while 

also enrolled in a general assessment course for all disciplines and a content reading course (state 

requirement). Most candidates have completed the mathematics major to this point, though a few 

may have one additional mathematics course. In semesters 1-3, TCs are all placed in 

mathematics classrooms with a teacher mentor, sequentially moving from 40, to 60, to 100+ 
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hours in each semester respectively. TCs enter the student teaching internship with more than 

200 classroom hours, multiple observations of teaching, and diverse school experiences. 

Population 

The present paper presents initial analyses of the four cohorts (N=52) performance on high 

stakes mathematics and teaching portfolio exams since our 2012 implementation of the second 

advanced perspective mathematics course. The year 2012 marked changes to the Praxis II 

Mathematics exam by ETS to align with the National Council of Teachers of Mathematics 

revised SPA CAEP Standards. Given the space limitations of these proceedings, we aggregate 

and disaggregate the programmatic data analyses on these high stakes measures. A subsequent 

research paper that uses advanced statistical analyses will seek publication in late 2018. We 

separate TCs into two groups by using the ACT composite and mathematics subscores of 28; a 

very good proxy of mathematical college readiness for math majors (Zelkowski, 2011). 

Instrumentation  

The Mathematics Classroom Observation Protocol for Practices (MCOP2) (Gleason, Livers, 

& Zelkowski, 2017) measures two factors that includes a measure on a mathematics teachers’ 

ability to facilitate mathematical learning and practices in their classrooms. This instrument 

focuses on the teacher’s ability to facilitate (TF) student engagement (SE) in the Standards for 

Mathematical Practice (SMPs) and the actual engagement of students in such practices related to 

improving student learning (NCTM, 2014). Before TCs enter the student teaching internship 

(Semester 4), program faculty conduct three (or more if needed) formal observations of teaching 

utilizing the MCOP2 instrument. The mean TF and SE scores of the observations for each TC 

represents their individual scores on these two factor measures. 

The Praxis II constitutes the high stakes measure of TCs content knowledge for which they 

study and learn in the mathematics major coursework. In the final cohort, the edTPA represents a 

nationally validated measure for pedagogical content knowledge for planning, enactment, and 

assessment of student learning. The total combined 15 rubrics from edTPA represent the score of 

each TC’s pedagogical content knowledge. Prior to the 4th cohort edTPA scores, we used the 

program’s predecessor Teacher Work Sample (TWS) portfolio which was used for cohorts one, 

two, and three. The TWS was similar in nature, scored with rubrics similar to the edTPA, and 

was a designed assessment to provide program feedback prior to edTPA being fully 

implemented. This is discussed in the limitation section. 
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Preliminary Findings 

In this initial paper, we examine the correlational relationships between grades in the 

advanced perspective courses, mathematics methods courses, Praxis II scores, observations of 

teaching using a validated protocol, and professional teaching portfolios. Figure 1 shows the 

correlation between the average grade in both program advanced perspective mathematics and 

the Praxis II passing score. The range of successful TCs for ACT composite is 20-34 with a math 

subscore range of 19-36. 

  
Figure 1. Correlation and model for grades in Advanced Perspective Courses and Praxis II 

Figure 2 shows the correlation between the average MCOP2 observation scores in Semester 3 

with the TWS/edTPA outcome measure during semester four when TCs are fulltime teaching 

interns.  

  
Figure 2. Correlation and model for MCOP2 observation scores and TWS/edTPA 

Our preliminary findings are one of consequence for many programs nationally. That is, the 

Median ACT score of 28 composite and mathematics subscore demonstrates a very different 

outlook for TCs on the Praxis II. Overall for the lower half, the contribution to the Praxis score 
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from their grades in the advanced perspective mathematics courses are only 1/3 of that of the top 

half (i.e. four Praxis II points for each grade point v 12). Given that the current multi-state cut 

score for the Praxis II is 160, this means that the mean grade in two specific content courses need 

to be at an “A” level to make up for the lack of depth of knowledge from high school given the 

ACT scores. That being said, we interpret these findings to indicate early interventions are worth 

a closer look for TCs in the freshman/sophomore years before entering our advanced perspective 

courses to improve mathematical learning ability. It can also be said, that three advanced 

perspective courses as suggested by the CBMS and AMTE warrants serious consideration. These 

data at our institution has resulted in a third advanced perspective mathematics course 

specifically for TCs which we began in the fall 2017.  

With regards to formal observations of teaching in semester three with the MCOP2 

instrument. Again, we see similar issues of concern. In general, we see only a small contribution 

(0.03) to overall TWS/edTPA scores for the lower half of ACT scoring TCs. The top half we see 

a very strong (nearly 0.50) and predictive nature of the observation scores with high-stakes 

outcome teaching measures during the internship. Obviously, teacher preparation programs 

nationally cannot institute an entrance requirement of a 28 ACT score (or comparable) and 

disenfranchise a large population of TCs from entering the teaching profession. However, 

programs should begin to identify TCs in the major in the freshman year and design learning 

experiences and program components to have TCs better prepared as they begin their upper 

division coursework. 

Of concern to our findings, many teacher preparation programs nationally do not have built 

in early coursework and experiences during the freshman year when TCs are completing the 

calculus sequence and general university/college core coursework. One promising improvement 

worth examination is the active learning research action cluster (RAC) in the national 

Mathematics Teacher Education-Partnership (MTE-P). More information can be found here for 

preparation programs to begin using the work from this network improvement community of the 

MTE-P RAC (see http://www.aplu.org/projects-and-initiatives/stem-education/mathematics-

teacher-education-partnership/mtep-racs/mtep-racs-alm.html). Improving the precalculus and 

calculus learning opportunities for TCs is worth strong consideration within our own program. 

For TCs who enter higher education lesser prepared based on ACT scores, mathematics courses 

that emphasize the teaching and learning of mathematics within the framework of the 
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mathematical practices likely would improve the performance and equitable opportunities to 

succeed on high stakes measures.  

Limitations 

The outcomes of our preliminary analyses have limitations. The analyses are aggregated by 

two groups determined by ACT scores and do not individually demonstrate the mass 

achievement and growth made by individual TCs who are program completers. The national 

scoring of edTPA may not also align perfectly with the program’s TWS assessment perfectly. 

The TWS had 10 rubrics and edTPA has 15. A simple conversion factor of 1.5 likely does not 

equate for the specificity that edTPA demands as opposed to fewer rubrics. However, the strong 

correlation between the upper half in both of these figures demonstrates a large impact on both 

the Praxis II and EdTPA measures for well-prepared college students. 
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